Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we investigate the restriction problem. More precisely, we give sufficient conditions for the failure of a set E in Rn to have the p-restriction property. We also extend the concept of spectral synthesis to Lp(Rn) for sets of p-restriction when p > 1. We use our results to show that there are p-values for which the unit sphere is a set of p-spectral synthesis in Rn when n ≥ 3.
Wydawca
Czasopismo
Rocznik
Tom
Strony
397--403
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Department of Mathematics, John Jay College-CUNY, 524 West 59th Street, New York, NY 10019, USA
Bibliografia
- [1] Foschi D., Oliveira e Silva D., Some recent progress on sharp Fourier restriction theory, Anal. Math., 2017, 43(2), 241-265
- [2] Guth L., Restriction estimates using polynomial partitioning II, Acta Math., 2018, 221(1), 81-142
- [3] Tao T., Some recent progress on the restriction conjecture, In: Brandolini L., Colzani L., Iosevich A., Travaglini G. (Eds.), Fourier analysis and convexity, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2004
- [4] Grafakos L., Modern Fourier analysis, volume 250 of Graduate Texts in Mathematics, 3rd ed., Springer, New York, 2014
- [5] Stolyarov D. M., Functions whose Fourier transform vanishes on a surface, 2016, arXiv:1601.04604
- [6] Domar Y., On the spectral synthesis problem for (n – 1)-dimensional subsets of Rn, n ≥ 2, Ark. Mat., 1971, 9, 23-37
- [7] Rudin W., Fourier analysis on groups, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990
- [8] Herz C. S., Spectral synthesis for the circle, Ann. of Math. (2), 1958, 68(3), 709-712
- [9] Agranovsky M. L., Narayanan E. K., Lp-integrability, supports of Fourier transforms and uniqueness for convolution equations, J. Fourier Anal. Appl., 2004, 10(3), 315-324
- [10] Guo K., On the p-thin problem for hypersurfaces of Rn with zero Gaussian curvature, Canad. Math. Bull., 1993, 36(1), 64-73
- [11] Guo K., On the p-approximate property for hypersurfaces of Rn, Math. Proc. Cambridge Philos. Soc., 1989, 105(3), 503-511
- [12] Guo K., A representation of distributions supported on smooth hypersurfaces of Rn, Math. Proc. Cambridge Philos. Soc.,1995, 117(1), 153-160
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e651aa4-af2e-4f41-bee5-877997617c85