PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Chemical Unhairing Process on Pulled Wool Characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Textile research is being driven to find sustainable materials as an alternative to raw fibers. In fact, reusing fibrous waste, as a byproduct, is one of the most important environmental challenges that confront the world. This research focused on studying pulled wool fibers as a natural fiber to reduce environmental loading. There are large amounts of residual pulled wool fibers that can be recycled and valorised. Therefore, raw and pulled wool fibers were characterized and compared. Scanning Electron Micrographs (SEM) results show that on the pulled wool fiber, the surface became rougher and the scales appear affected and less dense. Based on the X-ray diffraction (XRD) results, the crystallinity of the pulled fiber decreased lightly. Attenuated Total Reflectance-Fourier Transform Infra Red (ATR-FTIR) spectroscopy analyzes presented some changes in chemical composition. A High-Performance Liquid Chromatography (HPLC) test showed an increase in the amount of cystic acids. The pulled wool fiber indicates that it might have damaged some crosslinks of macromolecular chains in the fiber. Thus, physical, chemical and mechanical properties are affected during the chemical unhairing process. This research purpose was to increase the potential for better value of pulled wool as it presents the natural fiber most used in several applications.
Rocznik
Strony
70--78
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Textile Engineering Laboratory, University of Monastir, Monastir, Tunisia
  • Textile Engineering Laboratory, University of Monastir, Monastir, Tunisia
autor
  • Textile Engineering Laboratory, University of Monastir, Monastir, Tunisia
Bibliografia
  • 1. N. Eslahi, F. Dadashian & N. H. Nejad, Advanced Powder Technology, 24(1) (2013) 416.
  • 2. Y. Wang, Waste Biomass Valor, 1(1) (2010) 135.
  • 3. N. Fathima, R. Rao & B. U. Nair, Environmental Engineering Science, 29(6) (2012) 363.
  • 4. R. L. Edmonds, S. Deb Choudhury, R. G. Haverkamp, M. Birtles, T. F. Allsop & G. E. Norris, J. Agric. Food Chem., 56(17) (2008) 7934.
  • 5. A. Helal & M. M. Mourad, World Appl. Sci. J, 7(6) (2009) 693.
  • 6. W. Xu, G. Ke, J. Wu & X. Wang, European Polymer Journal, 42(9) (2006) 2168.
  • 7. T. Harizi & F. Abidi, International Journal of Scientific & Technology Research, 4(10) (2015) 368.
  • 8. A. R. Moghassem & A. A. Gharehaghaji, International Journal of Engineering, Transactions B: Applications, 21(3) (2008) 303.
  • 9. D. B. Shakyawar, V. Kadam, A. K. Surya, A. Ahmed, P. K. Pareek & P. Temani, The indian journal of small ruminants, 19(2) (2013) 192.
  • 10. S. Ogawa, K. Fujii, K. Kaneyama & K. Arai, Journal Of Cosmetic Science, 51 (2000) 379.
  • 11. M. Zoccola, A. Aluigi, A. Patrucco, C. Vineis, F. Forlini, P. Locatelli, M. C. Sacchi & C. Tonin, Textile Research Journal, 82(19) (2012) 2006.
  • 12. D. J. Westmoreland, A. C. Schlink & J. C. Greeff, Aust. J. Exp. Agric., 46(7)(2006) 921.
  • 13. H. Memon, H. Wang & E. Langat, Fibers, 6(3) (2018) 1.
  • 14. P. Charlet, A. M. Leroy & P. Cattin-Vidal, Annales de Zootechnie, 2(2) (1953) 177.
  • 15. N. Taherpour & F. Mirzaei, Agricultural Sciences, 03(2) (2012) 184.
  • 16. A. I. Nasr, M. M. Abdelsalam & A. H. Azzam, Egyptian Journal of Sheep and Goat Science, 8(1) (2013) 123.
  • 17. T. Harizi, F. Abidi, R. Hamdaoui & Y. B. Ameur, International Journal of Textile Science, 4(5) (2015) 97.
  • 18. A. J. Poole & J. S. Church, International Journal of Biological Macromolecules, 73 (2015) 99.
  • 19. T. Harizi, M. Hammadi, F. Sakli & T. Khorchani, Proceedings of the 2nd International Conference of Applied Research in Textile (CIRAT-2, At Monastir, Tunisia), 30th November to 2nd December 2006.
  • 20. G. S. Mahal, A. Johnston & R. H. Burns, Textile Research Journal, 21(2) (1951) 83.
  • 21. J. A. Rippon, Friction in Textile Materials (Deakin University, Australia), 2008.
  • 22. D. B. Sitotaw, A. H. Woldemariam, A. F. Tesema & A. B. Gebre, J. Inst. Eng. India Ser. E, 100 (2019) 121.
  • 23. Clay P. Mathis, Wool Grades Guide B-409 Cooperative Extension Service College of Agriculture and Home Economics (the New Mexico State University, Mexico), 2007.
  • 24. K.-H. Phan, F.-J. Wortmann, G. Wortmann & W. ARNS, Proc. first Inter. Symp. on Specialty Animal Fibers. Aachen, Deutsche Wollforschungsinstitut, 103 (1988) 137.
  • 25. T. Habe, N. Tanji, S. Inoue, M. Okamoto, S. Tokunaga & H. Tanamachi, Surf. Interface Anal., 43(2) (2011) 410.
  • 26. M. Wu, J. Jin, J. Zhang & F. Wang, Textile Research Journal, 89(12) (2019) 2281.
  • 27. M. G. Huson, Handbook of Properties of Textile and Technical Fibres (Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, VIC,Australia), 2018.
  • 28. J. McKittrick, P.-Y. Chen, S. G. Bodde, W. Yang, E. E. Novitskaya & M. A. Meyers, JOM, 64(4) (2012) 449.
  • 29. F. Élie, La laine de mouton : notions rudimentaires. [Sheep wool: rudimentary notions]. Retrieved from https://www.researchgate.net/publication/320408133, (2008).
  • 30. J. Cao & C. A. Billows, Polymer International, 48(10) (1999) 1027.
  • 31. J. Cao, Journal of Molecular Structure, 553(1) (2000)101.
  • 32. Z. Motaghi, S. Eskandarnejad & M. Montazer, Journal of Natural Fibers, 11(1) (2014) 1.
  • 33. H. Barani & A. Calvimontes, Plasma Chem Plasma Process, 34(6) (2014) 1291.
  • 34. G. P. Norton & C. H. Nicholls, Journal of the Textile Institute Transactions, 55(9) (1964) 462.
  • 35. J. Banerjee, E. Radvar & H. S. Azevedo, Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair (Queen Mary University of London, London, United Kingdom ), 2018.
  • 36. N. Chandwani, Purvi Dave, Vishal Jain, S.K.Nema & S.Mukherjee, Experimental study to improve anti-felting characteristics of merino wool fiber by atmosphere pressure air plasma (Bhat, Gandhinagar 382 428, India), 2016.
  • 37. P. Erra, N. Gómez, L. M. Dolcet, M. R. Juliá, D. M. Lewis & J. H. Willoughby, Textile Research Journal, 67(6) (1997) 397.
  • 38. B. Fernández-d’Arlas, European Polymer Journal, 103 (2018) 187.
  • 39. H. Zhang, S. Deb-Choudhury, J. Plowman & J. Dyer, Journal of Applied Polymer Science, 127(5) (2013) 3435.
  • 40. W. K. Surewicz, H. H. Mantsch & D. Chapman, Biochemistry, 32(2) (1993) 389.
  • 41. G. B. Ramaiah & D. Bhatia, International Journal of Engineering Technology Science and Research, 4(8) (2017) 112.
  • 42. A. Aluigi, M. Zoccola, C. Vineis, C. Tonin, F. Ferrero & M. Canetti, International Journal of Biological Macromolecules, 41(3) (2007) 266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e624b4a-b774-496f-b7c4-ae95d4afc542
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.