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Intelligent touch based user authentication  
 

Abstract 

 

Many researches had shown that touch based authentication is something 
possible to implement in many devices. This research focuses mainly on 

making a progress in this field by using more advanced methods such as 
SVM, kNN, kmeans or neural networks in attempt to build system for both 

recognizing and learning user’s behavior.  
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1. Introduction 
 

Touching something is one of the natural ways of human 

communication. It lets us show our interests, relations or get some 

knowledge about environment. Nowadays more and more devices 

make it fully available to interact by touching its screen. On the 

other hand, it is not so useful in authorization process. It is just  

a method of putting data into particular device. 

This research is an extension of previous work with more focus 

on this techniques and analysis of data on all steps of whole 

process. Hopefully it will make it all more reliable for usage on 

variety types of devices, including mobile phones, tablets or other 

with touch screens. 

 

2. Available solutions 
 

There are already some of approaches used in other researches. 

For instance, one is based on anthropometrics and uses that simple 

fact that swipe gesture would be different for users with different 

thumbs [2]. Other solutions propose to use flick gesture [3]. Those 

two seems to be too simple. Other example use much more 

sophisticated thing – surface electromyogram (s-EMG) [4], which 

unfortunately couldn’t be used, when devices isn’t capable of such 

a measurement. Of course, there have been many more 

“traditional” ones. They all tends to use keystrokes [5], as an 

input. It’s quite good, but they are much more different than the 

ways that mobile phones give us to authenticate. 

 

3. Previous approch 
 

Method used in first research consisted of vectors and matrices 

as a representation of user’s data, Euclidean distance as  

a measurement of pattern recognition ratio and randomly showing 

dots as an input.  

This approach was working on some very small users 

“database”, build of just 2 persons, but it’s efficiency reduced for 

about 25% after increasing amount of data to 10 distinct people.  

Since that it was decided to first analyze data gathered using this 

method and then figuring a way to reduce number of outliers and 

find other method of figuring out which user is interacting with 

device. 

This other method should also take possible lack of floating 

point operations as a possible problem when implementing on 

some devices 

 

4. First data analysis 
 

First of all, we gathered 3 user’s data as a material for analysis. 

It was inserted into CSV file and then processed using Octave into 

6 histograms. One for each person’s interactions property. 

 

First user’s reaction time (Fig. 1) seemed to be a little bit bell 

curved with a small outlier on the right site of plot. Also, there 

was a local peek in between very small values after global 

maximum and mentioned before outlier. 

 

 

 
 

Fig. 1. First user’s reaction time histogram 
 

Accuracy (Fig. 2) also showed the same properties. But now 

outlier was placed on the left side. Again, there were few 

disturbances. First just before a global maximum, where value had 

rapidly fallen down. Second one on the right end of the plot, in 

which value had rapidly grown. 

 

 

 
 

Fig. 2. First user’s accuracy histogram 
 

Next user’s reaction time (Fig. 3) had been measured as more 

repetitive than the first ones. There were no significant changes in 

bell shape. On the other hand, one of the bars in plot is so far from 

most of the data, undouble an error in measurement. 

Accuracy (Fig.4) instead covered almost whole values on the 

histogram, with only a little bit of space on both left and right side 

of the plot. There is only one peek which seems strange in 

neighborhood of smallest values on the right side of plot. Also, 

that smallest values slightly break the bell shape making. 
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Fig. 3. Second user’s reaction time histogram 
 

 

 
 

Fig. 4. Second user’s accuracy histogram 
 

Last user’s reaction time (Fig. 5) have the same properties as the 

middle ones. Almost perfectly bell shape, which just one smallest 

outlier on the right side.  

 

 

 
 

Fig. 5. Third user’s reaction time histogram 
 

Accuracy (Fig. 6) also showed good shape and only one single 

outlier. 

 

 

 
 

Fig. 6. Third user’s accuracy histogram 
 

All the other data was also fulfilling this observations about bell 

curved shape, outliers on the left or right side and sudden changes 

in particular points of the histograms.  

As there were no certain value of outliers it wasn’t fully possible 

just drop something below or over this value to prevent them or to 

filter them. The only reasonable way was to analyse users 

separately a than cutting of values which are suspected to be 

errors. It could be performed in spite of the fact that in all our data, 

unacceptable values seemed to be preceded by an empty space. 

 

5. Method improvement 
 

Firstly, randomness was reduced in order to gather more precise 

data. It is easy to prove that time of reaction (Tr), which is one of 

the measured properties, could be represented as a sum of 

realization time (tr), movement time (tm) and time of clicking (tc). 

 

 
 

Realization time is simply an amount of time which passed from 

the moment of appearance of dot till being noticed by user, as so it 

could be treated as a constant value of approximately 250 ms. 

Next value, the time of movement, is a portion of time in which 

user was moving toward to dot. As the positions was generated 

randomly this certain value was considered as most variable.  

Last value – time of clicking stands for number of milliseconds 

between stopping movement and clicking the dot.  

Because of randomness in something which is not fully 

connected with user’s characteristics, it was decided to make some 

serious change in way of presenting our login layer. 

Previous way was changed into a grid of 9 dots showed all the 

time on a screen. This idea was divided into two separate one. 

First used two properties of user’s characteristics and based on 

alteration of colour of randomly chosen dot in order to show 

which one must be clicked. Second one added two more properties 

and had extended interaction to not only clicking but also drag and 

drop interaction between central dot, and one that had been chosen 

by algorithm. 

With two new ways of both interacting and gathering the data 

we decide to get data of 10 users. 

 

6. Second data analysis 
 

After reimplementing the methods of data acquisition, we tried 

again to get data and analyse them. Since there were more users, 

instead of visualizing as distinct histograms, all data was shown as 

colour dots and stars on plots. 
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Fig. 7. User’s data acquired using first method (reaction time – X axis,  

accuracy Y axis) 
 

Data of 10 users (Fig. 7) acquired using first method showed 

large group of measured values to be from 500 to 1000 ms on 

reaction time axis, which almost all of them nearby left boundary 

of that particular set. It seems that accuracy is much more distinct, 

covering almost 75% of whole range of possible values.  

There were also outliers. One absolutely clear on right side of 

plot, nearby legend. It is absolutely a value that has to be removed. 

Points between 1000 and 1500 ms could also be considered in that 

way. Together it will make 12 point to drop off. 

Even much more distinct, the accuracy axis also has some 

values which seems to be a little bit different than the other ones. 

It seems that there could be a straight line separating them, which 

would have constant value around 82 on this axis.  

Because second method consisted of 4 distinct values measured, 

plot was divided. First one (Fig. 8) presented reaction time and 

accuracy, and the second one (Fig. 9) showed interaction time and 

drop distance. 

 

 

  

Fig. 8. User’s data acquired using second method (reaction time – X axis,  

accuracy Y axis) 
 

Almost all values of the reaction time were, as in previous 

method, between 500 and 1000 ms. But now there were much 

more values far from that range. Basing on this example it’s rather 

good choice to remove all values bigger than 1000 ms. 

Next value – accuracy has divided into 4 groups, instead of one 

big group as in first method. And this time there is no value 

considered as an outlier. 

Last plot showed properties similar to the first one, but with 

values rotated 90 degrees clockwise. Drop distance has most of 

values between 200 and 300 px, with some outliers. 

 

 

 
 

Fig. 9. User’s data acquired using second method (interaction time – X axis,  

drop distance Y axis) 
 

Interaction time set of values is a little bit bigger, than reaction 

time set. It now covers an area from about 250 to 1500 ms, 

making it bigger on the left and right side. 

 

7. Classification 
 

Since there was only one time calculation for building user model 

we decided to make it more useful by usage of classification 

methods. It is absolutely obvious that this method is a supervised 

one, as we know on the beginning which user inputs which data.  

To choose one, wasn’t so easy. Classificator must be good, 

which simply means that ideally there is no false positive or false 

negative. Also, it will be good if it could be calculated fast on 

every possible device with touch screen.  

For a test, we chosen to use MATLAB environment because of 

possibility of fast building a prototype, which could be than 

implemented into our device. For checking more methods, 

restriction of fast calculation was omitted. After few 

considerations methods such as SVM, kNN, kmeans and neural 

networks were chosen. First one for the fact than in theory it gives 

us one, globally optimal separator. Next two were used in spite of 

fact that data seemed to take circular shapes on the 2d plot. Last 

one, the neural network for its ability of learning.  

Unfortunately, every single method has failed for data collected 

in learning mode of our system. Support vectors not just failed, 

they don’t even give any useful result, as the execution of script 

finished with error pointing that, there was request of allocation  

a 20.8GB array which exceeded maximum of array size. After few 

changes, it ended up with out of memory error. Because of this we 

dropped SVM from our tests.  

Next, we used more simpler method – kNN. At the beginning, it 

is crucial to say that two possible parameter changes for fitcknn 

function were used. We selected 4 distance metrics: Euclidean, 

cityblock, Minkowski and Chebychev. For other one – number of 

neighbours there was a for loop starting in value of 1 and ending 

in value of size of user’s data size. This method also failed, with 

error rate 65-76% of misclasifications (Tab. 1).  

The third one failed as well. Even more there were no 

signification change in error, while changing distance parameter 

of kmeans function from sqeuclidean to cityblock, cosine and 

correlation. All approaches didn’t work at all.  

 
Tab. 1. Total errors for kNN method after training using different metrics  

and neighbors count 

 
Metric Value of k/ Total errors 

1 3 5 7 9 11 13 15 17 19 

Euclidean 69 73 65 66 72 72 69 73 72 72 

cityblock 72 72 68 69 74 69 69 70 69 74 

Minkowski 69 73 65 66 72 72 69 73 72 72 

Chebychev 70 63 66 65 70 71 74 76 75 74 
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Finally, we had run a neural network. It was trained 36 times, as 

we used 12 train functions, and used them 3 times to test influence 

of random initial values. All of them had divided data to 3 groups. 

75% into train data, 15% into validation data, and 15% into test 

data. Training ended up with values nearby 8 on mean squared 

error, which was completely unsatisfying (Tab. 2).  

 
Tab. 2. Mean squared error of neural network after training using different  

training methods 

 
Training function Iteration MSE 

trainlm 1 7.968663 

2 8.14908 

3 7.668962 

trainbr 1 8.237540 

2 8.250138 

3 8.248621 

trainbfg 1 8.582926 

2 8.125015 

3 8.022676 

trainrp 1 8.630761 

2 8.224388 

3 8.233520 

trainscg 1 9.303814 

2 8.190188 

3 8.236573 

traincgb 1 8.119635 

2 8.278259 

3 8.246448 

traincgf 1 8.007262 

2 8.260097 

3 8.192108 

traincgp 1 8.180767 

2 8.018977 

3 8.477190 

trainoss 1 8.337426 

2 8.145450 

3 8.328760 

traingdx 1 8.841231 

2 8.526475 

3 8.259220 

traingdm 1 9.809494 

2 14.337752 

3 8.471278 

traingd 1 9.243019 

2 8.321443 

3 8.124793 

 

For this reason, we decided to preprocess data. It was done the 

same way as we presented data about users – using histogram. 

This simple process has given us distinction in all data. With 

simply grouping user rows into 5 rows, and then dividing all 

dimensions separately into 5 distinct measurements, we achieved 

success. Using kNN we found out that for 1 neighbor there is only 

2 false recognitions for 20 test rows, when using our first 

measurement method. Even more there were no errors with 1 

neighbor when using second of our measurement methods  

(Tab. 3). 

 
Tab. 3. Total errors for kNN method after training on preprocessed data using 

different metrics and neighbors count 

 
Metric Value of k/ Total errors 

1 3 5 7 9 11 13 15 17 19 

Euclidean 0 13 14 16 17 17 17 17 17 17 

cityblock 0 13 14 16 16 18 16 17 17 13 

Minkowski 0 13 14 16 17 17 17 17 17 17 

Chebychev 0 15 16 17 17 18 18 16 15 16 

 

 

8. Conclusions 
 

Identifying users by how they interact with touch screens is 

possible. Even more it seems that it could be done using simple 

methods such as kNN, and with only 4 types of values measured.  

On the other hand, there is still place for researches on things 

like distributing user’s data between devices, filtering the data, 

making system fully able to learn and even more. Certainly, all of 

these things would be taken into account in our future researches 

focused on this kind of user authorization process. Interaction time 

set of values is a little bit bigger, than reaction time set. It now 

covers an area from about 250 to 1500 ms, making it bigger on the 

left and right side.  
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