Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article contains general information on the bonding of aluminum sheets, considering the most commonly used methods of surface preparation of sheets, a description of the bonding mechanism and a comparison of the different types of adhesives used in the industry, a summary table provides information on the most commonly used adhesives used in the industry. In addition, the static tensile test of aluminum alloys used in the automotive industry is described. In the following part of the article, the research problem of bonding strength of sheet metal by gluing with two types of two-components adhesive Epidian 57 and Epidian 53 is solved. In the practical part of the research, aluminum alloy 2024 - T3, the most used alloy to produce low-load structural components used in the automotive and aerospace industries, was used. The test consisted of gluing together two overlapping (overlap bonding) sheets of metal with different types of adhesives using a specially designed device. The thickness of the sheet used was 1mm, the total thickness was 2mm. After the gluing process, the samples were torn on a testing machine. The results are shown in a summary table and presented in a graph.
Czasopismo
Rocznik
Tom
Strony
139--146
Opis fizyczny
Bibliogr. 41 poz., il., tab.
Twórcy
autor
- Faculty of Energy and Environmental Engineering, Silesian University of Technology, Poland
autor
- Faculty of Energy and Environmental Engineering, Silesian University of Technology, Poland
autor
- Faculty of Energy and Environmental Engineering, Silesian University of Technology, Poland
Bibliografia
- 1. Thomas M.; Białecka B.; Zdebik D. Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method, Archives of Environmental Protection, 2017; Vol. 43(4), 39-49. https://doi.org/10.1515/aep-2017-0044
- 2. Ciuła, J.; Generowicz, A.; Gaska, K.; Gronba-Chyła, A. Efficiency Analysis of the Generation of Energy in a Biogas CHP System and its Management in a Waste Landfill – Case Study, J Ecol Eng, 2022, Vol. 23, 143-156.
- 3. Gronba-Chyła A.; Generowicz A.; Kwaśnicki P.; Cycoń D.; Kwaśny J.; Grąz K.; Gaska K.; Ciuła J. Determining the Effectiveness of Street Cleaning with the Use of Decision Analysis and Research on the Reduction in Chloride in Waste, Energies, 2022; Vol. 15, 3538. https://doi.org/10.3390/en15103538
- 4. Generowicz A.; Gronba-Chyła A.; Kulczycka J.; Harazin P.; Gąska K.; Ciuła J.; Ocłoń, P.; Life Cycle Assessment for the environmental impact assessment of a city’ cleaning system. The case of Cracow (Poland), Journal of Cleaner Production, 2023, Vol. 382, 135184.
- 5. Gaska K.; Generowicz A.; Gronba-Chyla A.; Ciula J.; Wiewiórksa I.; Kwaśnicki P.; Mala M.; Chyla K. Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change, Energies, 2023, Vol. 16(15), 5732. https://doi.org/10.3390/en16155732
- 6. Kwaśnicki P.; Gronba-Chyla A.; Generowicz A; Ciuła J.; Wiewiórska I.; Gaska K., Alternative method of making electrical connections in the 1st and 3rd generation modules as an effective way to improve module efficiency and reduce production costs, Archives of Thermodynamics, 2023, Vol. 44(3), 179-200. https://doi.org/10.24425/ather.2023.147543
- 7. Adamczak S.; Bochnia J.; Kundera C. Stress and strain measurements in static tensile tests, Metrology and Measurement Systems, 2021, 531-540.
- 8. Vogt T.; Boden S.; Andruszkiewicz A.; Eckert K.; Eckert S.; Gerbeth G. Detection of gas entrainment into liquid metals, Nuclear Engineering and Design, 2015, Vol. 294, 6-23. https://doi.org/10.1016/j.nucengdes.2015.07.072
- 9. Huda Z.; Taib N.I.; Zaharinie T. Characterization of 2024 T3: An aerospace alluminium alloy, Material Chemistry and Physics, 2009, Vol. 113(2-3), 515-517.
- 10. Malysheva G.V. Predicting the endurance of adhesive joints, Polym Sci Ser, 2014, Vol. 7(2), 145-148.
- 11. Petrova A.P. Main stages of gluing technology, Polymer Science Series D, 2014, Vol. 7, 293-297.
- 12. Antipov V.V. The strategy for development of titanium, magnesium, beryllium and aluminum alloys, Aviats. Mater. Tekhnol. Suppl., 2012, Vol. 157-167.
- 13. Anikhovskaya L.I.; Pavlovskaya T.G.; Dement’eva P.A.; Petrova A.P. Surface preparation for gluing, Polym. Sci. Ser., 2009, Vol. 2(1), 50-53.
- 14. Kuczmaszewski J. Fundamentals of metal-metal adhesive joint design. Polish Academy of Sciences. Lublin Branch, 2006, Lublin, 205.
- 15. Voitovich V.A. Methods of surface preparation of products from metals and alloys, Klei. Germetiki. Tekhnol, 2005, Vol. 9, 19-23
- 16. Kuczmaszewski J.; Domińczuk J. Właściwości adhezyjne warstwy wierzchniej stali konstrukcyjnych. (Adhesion properties of the surface layer of structural steels) Przegląd Mechaniczny, 2001, Vol. 3, 5-8.
- 17. Broniszewski M.; Werle S. CO2 reduction methods and evaluation of proposed energy efficiency improvements in Poland’s large industrial plant. Energy, 2022, Vol. 202, 117704. https://doi.org/10.1016/j.energy.2020.117704
- 18. Ingarao G. Manufacturing strategies for efficiency in energy and resources use: The role of metal shaping processes. J Clean Prod, 2017, Vol. 142(1), 2872-2886. https://doi.org/10.1016/j.jclepro.2016.10.182
- 19. Wang L.; Shao J.; Digital economy, entrepreneurship and energy efficiency. Energy, 2023, Vol. 269, 126801.
- 20. Tang Y.; Mak K.; Zhao YF. A framework to reduce product environmental impact through design optimization for additive manufacturing. J Clean Prod, 2016, Vol. 137, 1560-1572. https://doi.org/10.1016/j.jclepro.2016.06.037
- 21. Oehlers D.J; Mohamed Ali M.S.; Luo W., Upgrading continuous reinforced concrete beamsby gluing steel plates their tension faces. Journal of Structural Engineering, 1998, Vol. 124(3).
- 22. Deng Y-Q.; Huang Y.; Young B. Tests of concrete-filled high strength steel RHS and SHS beams, Thin-Walled Structures, 2013, Vol. 185, 110567.
- 23. Phan D.N.; Rebia R.A.; Saito Y.; Kharagha D.; Khatri M.; Tanaka T.; Lee H.; Kim I-S. Zinc oxide nanoparticles attached to polyacrylonitrile nanofibers with hinokitiol as gluing agent for synergistic antibacterial activities and effective dye removal. Journal of Industrial and Engineering Chemistry, 2020, Vol. 85, 258-268.
- 24. Jacquin D.; Guillemot G., A review of microstructural changes occurring during FSW in aluminium alloys and their modelling, Journal of Materials Processing Technology, 2021, Vol. 288, 116706.
- 25. Ahmmad M.M.; Sumi Y. Strength and Deformability of corroded steel plates under quasi-static tensile load, J. Mar. Sci. Technol, 2010, Vol. 15(1), 1-15.
- 26. Gagliardi F.; Palaia D.; Ambrogio G. Energy consumption and CO2 emissions of joining processes for manufacturing hybrid structures, J of Clean Prod, 2019, Vol. 228, 425-436.
- 27. Appuhamy J.M.R.S.; Kaita T.; Ohga M.; Fujii K. Prediction of residual strength of corroded tensile steel plates, Int J Steel Struct, 2011, Vol. 11(1), 65-79.
- 28. Chyła K.; Gaska K.; Gronba-Chyła A.; Generowicz A.; Grąz K.; Ciuła J., Advanced Analytical Methods of the Analysis of Friction Stir Welding Process (FSW) of Aluminum Sheets Used in the Automotive Industry, Materials, 2023, Vol. 16(14), 5116. https://doi.org/10.3390/ma16145116
- 29. Yucheng Z.; Koichi H.; Sota K.; Kiyoka T.; Wei M.; Atsushi T. Enhanced Adhesion Effect of Epoxy Resin on Metal Surfaces Using Polymer with Catechol and Epoxy Groups, ACS Appl. Polym. Mater, 2020, 2, 4, 1500-1507. https://doi.org/10.1021/acsapm.9b01179
- 30. Min Y.; Ming-Bo L.; You-Lu Y.; Gao L.; Fu-Wei M.; Ling-Feng D.; Shan-Jie T. Review of experimental techniques for impact property of adhesive bonds, International Journal of Adhesion and Adhesives, 2020 https://doi.org/10.1016/j.ijadhadh.2020.102620
- 31. Budhe S.; Ghumatkar A.; Birajdar N.; Banea M. D. Effect of surface roughness on the adhesive bond strength of aluminium, Applied Adhesion Science, 2015, Vol. 3, 20.
- 32. Nasreen A.; Khubab S.; Yasir N., Effect of surface treatments on metal-composite adhesive bonding for high-performance structures: an overview, Composite Interfaces, 2021, Vol. 28, 1221-1256. https://doi.org/10.1080/09276440.2020.1870192
- 33. Da Silva L.F.M.; Carbas R.J.C.; Critchlow G.W.; Figueiredo M.A.V.; Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints, Int J Adhes Adhes, 2009, Vol. 29(6), 621-632. https://doi.org/10.1016/j.ijadhadh.2009.02.012
- 34. Dawei Z., Ying H., Influence of surface roughness and bondline thickness on the bonding performance of epoxy adhesive joints on mild steel substrates, Progress in Organic Coatings, 2021, Vol. 153, 106135. https://doi.org/10.1016/j.porgcoat.2021.106135
- 35. Rudawska A.; Zaleski K.; Miturska I.; Skoczylas A. Effect of the Application of Different Surface Treatment Methods on the Strength of Titanium Alloy Sheet Adhesive Lap Joints, Materials, 2019, Vol. 12(24), 4173 https://doi.org/10.3390/ma12244173
- 36. Ponsoni J.B. Refill friction stir spot welding of AA6016-T4 aluminum alloy: study of new load-controlled process, 2020, Bachelor Dissertation, Federal University of Sao Carlos, Brasil.
- 37. Ozun E.; Ceylan R.; Özgür Bora M.; Çoban O.; Kutluk T., Combined effect of surface pretreatment and nanomaterial reinforcement on the adhesion strength of aluminium joints, International Journal of Adhesion and Adhesives, 2021, Vol. 119, 103274. https://doi.org/10.1016/j.ijadhadh.2022.103274
- 38. Loutas T.H.; Kliafa P.M.; Sotiriadis G.; Kostopoulos V. Investigation of the effect of green laser pre-treatment of aluminum alloys through a design-of-experiments approach, Surface and Coatings Technology, 2019, 370-382, https://doi.org/10.1016/j.surfcoat.2019.07.044
- 39. Brundage M.P.; Bernstein W.Z.; Hoffenson S.; Chang Q.; Nishi H.; Kliks T.; Morris K.C. Analyzing environmental sustainability methods for use earlier in the product lifecycle, J Clean Prod, 2018, Vol. 187, 877-892.
- 40. Critchlow W.C. Surface pretreatments for optimized adhesive bonding, Adhesive Bonding (Second Edition), 2021, 109-132. https://doi.org/10.1016/B978-0-12-819954-1.00010-1
- 41. Jinyu H.; Peiran D.; Sujing W.; Hui X.; Yongze S. Study on formability and microstructure evolution of hot deep drawing manufactured 7005 aluminum alloy sheet metal, Material study communications, 2023. https://doi.org/10.1016/j.mtcomm.2023.106794
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e5d90fb-4193-4525-9032-52432a39d529
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.