PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Spectral Characteristics of Sound Waves Scattered from a Cracked Cylindrical Elastic Shell Filled with a Viscous Fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The scattering of plane steady-state sound waves from a viscous fluid-filled thin cylindrical shell weak- ened by a long linear slit and submerged in an ideal fluid is studied. For the description of vibrations of elastic objects the Kirchhoff-Love shell-theory approximation is used. An exact solution of this problem is obtained in the form of series with cylindrical harmonics. The numerical analysis is carried out for a steel shell filled with oil and immersed in seawater. The modules and phases of the scattering amplitudes versus the dimensionless wavenumber of the incident sound wave as well as directivity patterns of the scattered field are investigated taking into consideration the orientation of the slit on the elastic shell surface. The plots obtained show a considerable influence of the slit and viscous fluid filler on the diffraction process.
Rocznik
Strony
335--350
Opis fizyczny
Bibliogr. 37 poz., wykr.
Twórcy
  • Faculty of Process and Environmental Engineering, Lodz University of Technology Wołczańska 213, 90-924 Łodź, Poland
  • Lviv, Ukraine
Bibliografia
  • 1. Achenbach J.D. (1973), Wave propagation in elastic solids, North-Holland Publ. Co., Amer. Elsevier Publ. Co., Inc., Amsterdam, London, New York.
  • 2. Anson L.W., Chivers R.C. (1981), Frequency dependence of the acoustic radiation force function (Yp)for spherical targets for a wire range of materials, J. Acoust. Soc. Amer., 69, 6, 1618-1623.
  • 3. Anson L.W., Chivers R.C. (1993), Ultrasonic scattering from spherical shells including viscous and thermal effects, J. Acoust. Soc. Amer., 93, Pt. 1, 4, 1687-1699.
  • 4. Artobolevski I.I. (main Ed.) (1976), Polytechnical Dictionary [in Russian], Sov. Encyclopedia, Moscow.
  • 5. Åseng V. (2006), Compressibility and sound speed, Diploma thesis; Norwegian University of Science and Technology, Trondheim. - www.ipt.ntnu.no/_jsg/stu-denter/diplom/2006VidarAAseng.pdf
  • 6. Bateman H., Erdélyi A. (1953), Higher transcendental functions. Vol. 2, Mc Graw-Hill Book Co., Inc., New York, Toronto, London.
  • 7. Belov A.V., Kaplunov J.D., Nolde E.V. (1999), A refined asymptotic model of fluid-structure interaction in scattering by elastic shells, Flow, Turbulence and Combustion, 61, 1-4, 255-267.
  • 8. Brekhovskikh L.M., Godin O.A. (1989), Acoustics of layered media [in Russian], Nauka, Moscow.
  • 9. Dukhin A.S., Goetz P.J. (2009), Bulk viscosity and compressibility measurement using acoustic spectroscopy, J. Chem. Physics, 130, 12, 124519-1-124519-13.
  • 10. Dwight H.B. (1957), Tables of integrals and other mathematical data, The Macmillan Co., New York.
  • 11. Felsen L., Markuvitz N. (1973), Radiation and scattering of waves, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
  • 12. Gaunaurd G., Werby M.F. (1990), Acoustic resonance scattering by submerged elastic shells, Appl. Mech. Rev., 43, 171-208.
  • 13. Goldsberry T.G. (1967), Reflection of circumferential waves from a slit in a thin-walled cylinder, J. Acoust. Soc. Amer., 42, 6, 1298-1305.
  • 14. Hasheminejad S.M., Safari N. (2003), Dynamic viscoelastic effects on sound wave diffraction by spherical and cylindrical shells submerged in and filled with viscous compressible fluids, Shock and Vibration, 10, 5/6, 339-363.
  • 15. Hickling R., Means R.W. (1968), Scattering frequency-modulated pulses by spherical elastic shells in water, J. Acoust. Soc. Amer., 44, 5, 1246-1252.
  • 16. Kachaenko O.B., Pal’ko L.S., Shul’ga N.A. (1990), Acoustic wave diffraction by an elastic cylindrical shell with viscous filling, Int. Applied Mech., 25, 7, 662-667 [transl. from Russian: Prikladnaya Mekhanika (1989), 25, 7, 38-44].
  • 17. Kaplunov J.D., Kossovich L.Yu., Nolde E.V. (1998), Dynamics of thin walled elastic bodies, Academic Press, San Diego, Calif.
  • 18. Kaplunov J.D., Nolde E.V., Veksler N.D. (1994), Asymptotic formulae for the modal resonance of peripheral waves in the scattering of an obliquely incident plane acoustic wave by a cylindrical shell, Acustica, 80, 3, 280-293.
  • 19. Kerbrat E., Clorennec D., Prada C., Royer D., Cassereau D., Fink M. (2002), Detection of cracks in a thin air-filled hollow cylinder by application of the DORT method to elastic components of the echo, Ultrasonics, 40, 715-720.
  • 20. Kubenko V.D., Ryabukha Yu.N., Savina I.V. (1989), Acoustic wave diffraction by coaxial piezoceramic shells with a viscous fluid, Int. Applied Mech., 24, 10, 961-966 [transl. from Russian: Prikladnaya Mekhanika (1988), 24, 10, 28-34].
  • 21. Landau L.D., Lifsitz E.M. (1987), Fluid mechanics. Vol. 6 (Course of theoretical physics), Butterworth- Heinemann, Oxford.
  • 22. Litovitz T.A., Davis C.M. (1965), Structural and shear relaxation in liquids, Physical Acoustics, Vol. 2, Part A: Properties of gases, liquids, and solutions, Academic Press, New York.
  • 23. Makino H., Kubo T., Shiwaku T., Endo S., Inoue T., Kawaguchi Y., Matsumoto Y., Machida S. (2001), Prediction for crack propagation and arrest of shear fracture in ultra-high pressure natural gas pipelines, ISIJ Int., 41, 4, 381-388.
  • 24. Meng G., Jaworski A.J., White N.M. (2006), Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers, Chem. Engineering and Processing, 45, 383-391.
  • 25. Metsaveer Ja.A., Veksler N.D., Stulov A.S. (1979), Diffraction of acoustic pulses by elastic bodies [in Russian], Nauka, Moscow.
  • 26. Mohamed N., Jawhar I., Al-Jaroodi J., Zhang L. (2011), Sensor network architectures for monitoring underwater pipelines, Sensors, 11, 11, 10738-10764.
  • 27. Piddubniak O.P. (1995), Frequency characteristics of sound waves scattered by an elastic circular cylindrical shell with a slit along generating line [in Ukrainian], Proc. Nat. Acad. Sci. Ukraine, 9, 38-40.
  • 28. Piddubniak O.P., Piddubniak N., Karnicki K. (2009), Acoustic echo-signal from a thin cylindrical shell with a slit, DIPED-2009: Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory: Proc. XIVth Int. Seminar/Workshop, Lviv, Sept. 21-24, 2009, 24-30, Lviv.
  • 29. Pidstryhach Ja.S., Piddubniak O.P. (1986), Scattering of the sound beams from the elastic bodies of spherical and cylindrical forms [in Russian], Naukova Dumka, Kyiv.
  • 30. Pidstryhach Ja.S., Shvetz R.M. (1978), Thermoelasticity of thin shells [in Russian], Naukova Dumka, Kyiv.
  • 31. Porokhovski V.V. (2008), Plane problem of interaction of elastic longitudinal wave and cylindrical shell with an axial slit [in Ukrainian], Math. Methods and Physicomech. Fields, 51, 1, 131-137.
  • 32. Taşköprülü N.S¸., Barlow A.J., Lamb J. (1961), Ultrasonic and viscoelastic relaxation in a lubricating oil, J. Acoust. Soc. Amer., 33, 3, 278-285.
  • 33. Tittmann B.R. (2011), Ultrasonic sensor viscosity of mineral oil for built-in pipe applications, Sensor+Test Conference, 7-9 June 2011, Nürnberg, Germany, 171-176.
  • 34. Veksler N.D. (1993), Resonance acoustic spectroscopy, Springer-Verlag, Berlin, New York.
  • 35. Vollmann J., Dual J. (1997), High-resolution analysis of the complex wave spectrum in a cylindrical shell containing a viscoelastic medium. Part I. Theory and numerical results, J. Acoust. Soc. Amer., 102, 2, pt. 1, 896-908.
  • 36. Yeh C. (1968), Diffraction of sound waves by a moving fluid cylinder, J. Acoust. Soc. Amer., 44, 5, 1216-1219.
  • 37. Zhang Han, Chimenti D.E. (1997), Ultrasonic beam reflection from lossy layered cylindrical shells, Ultrasonics, 35, 441-450.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e55a755-4799-4dd4-8aa1-d5f1ef0b5e32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.