PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the influence of stiffness of beam-column connections on the seismic behavior of composite moment resisting frames

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the design of steel or composite structures, the connections are usually considered infinitely rigid or perfectly pinned. However, the real behavior of these connections is semi-rigid. Consequently, this semi-rigidity can influence the overall behavior of the composite structures, especially the moment-resisting frames. Seismically, the most critical parameter that characterizes the frames behavior is the response factor R. In this context, the research work consists of studying the semi-rigidity effect of the connections on the behavior of the composite frames by evaluating the response modification factor R by using the Pushover method. To accomplish this task, three types of portal frames of 3, 4 and 5 storeys were analyzed for different degrees of connection (beam-column). An easy and practical solution has been proposed to determine the approximate value of the coefficient behavior R for the composite frames with semi-rigid connections.
Rocznik
Strony
55--67
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • PhD; Laboratory of Materials and Mechanic of Structures, Mohamed Boudiaf University of M’sila, Algeria
  • Prof.; Laboratory of Materials and Mechanic of Structures, Mohamed Boudiaf University of M’sila, Algeria
autor
  • Assistant Prof.; Laboratory of Materials and Mechanic of Structures, University of Mohamed El bachir el Ibrahimi, Bordj Bou Arreridj, Algeria
autor
  • Assistant Prof.; Department of Civil Engineering, Mouloud Mammeri University of Tizi-Ouzou, Algeria
Bibliografia
  • [1] Elghazouli, A. Y., Castro, J. M., & Izzuddin, B. A. (2008). Seismic performance of composite moment-resisting frames. Engineering Structures, 30(7), 1802-1819.
  • [2] Ahmed, B., & Nethercot, D. A. (1997). Prediction of initial stiffness and available rotation capacity of major axis composite flush endplate connections. Journal of Constructional Steel Research, 41(1), 31-60.
  • [3] Liew, J. R., Teo, T., Shanmugam, N., & Yu, C. (2000). Testing of steel-concrete composite connections and appraisal of results. Journal of Constructional Steel Research, 56(2), 117-150.
  • [4] Da Silva, L. S., Simoes, R. D., & Cruz, P. J. (2001). Experimental behaviour of end-plate beam-to-column composite joints under monotonical loading. Engineering Structures, 23(11), 1383-1409.
  • [5] Liew, J. R., Teo, T., & Shanmugam, N. (2004). Composite joints subject to reversal of loading - Part 2: analytical assessments. Journal of Constructional Steel Research, 60(2), 247-268.
  • [6] Liew, J. R., Teo, T., & Shanmugam, N. (2004). Composite joints subject to reversal of loading-Part 1: experimental study. Journal of Constructional Steel Research, 60(2), 221-246.
  • [7] Fu, F., & Lam, D. (2006). Experimental study on semi-rigid composite joints with steel beams and precast hollow core slabs. Journal of Constructional Steel Research, 62(8), 771-782.
  • [8] Vasdravellis, G., Valente, M., & Castiglioni, C. A. (2009). Dynamic response of composite frames with different shear connection degree. Journal of Constructional Steel Research, 65(10-11), 2050-2061.
  • [9] Piluso, V., Rizzano, G., & Tolone, I. (2012). An advanced mechanical model for composite connections under hogging/sagging moments. Journal of Constructional Steel Research, 72(35-50).
  • [10] Barcewicz, W., & Gizejowski, M. A. (2013). Experimental tests of composite joints subjected to hogging and sagging bending moments. Paper presented at the: Proceedings of International Conference on Composite Construction in Steel and Concrete VII, North Queensland, Australia.
  • [11] Thai, H. T., Vo, T. P., Nguyen, T. K., & Pham, C. H. (2017). Explicit simulation of bolted endplate composite beam-to-CFST column connections. Thin-Walled Structures, 119(749-759).
  • [12] Aksoylar, N. D., Elnashai, A. S., & Mahmoud, H. (2011). The design and seismic performance of low-rise long-span frames with semi-rigid connections. Journal of Constructional Steel Research 67(1), 114-126.
  • [13] Sekulovic, M., & Nefovska-Danilovic, M. (2008). Contribution to transient analysis of inelastic steel frames with semi-rigid connections. Engineering Structures, 30(4), 976-989.
  • [14] Vellasco, P. D. S., De Andrade, S., Da Silva, J., De Lima, L., & Brito Jr, O. (2006). A parametric analysis of steel and composite portal frames with semi-rigid connections. Engineering Structures, 28(4), 543-556.
  • [15] Louzai, A., & Abed, A. (2015). Evaluation of the seismic behavior factor of reinforced concrete frame structures based on comparative analysis between non-linear static pushover and incremental dynamic analyses. Bulletin of Earthquake Engineering, 13(6), 1773-1793.
  • [16] Eurocode 4. (2001) Structural Steelwork Eurocodes Development of a Trans-National Approach.
  • [17] l’Urbanisme, M. d. l. H. e. d. (2003). Règles Parasismiques Algériennes RPA 99/Version 2003 (Algerian Seismic Rules RPA 99 / Version 2003). In M. d. l. H. e. d. l’Urbanisme (Ed.), ( Edition CGS ed.).
  • [18] Applied Technology Council, ATC-19 (1995) Structural response modification factors, Redwood City, California.
  • [19] Titoum, M., Tehami, M., & Achour, B. (2009). Effects of partial shear connection on the behavior of semi-continuous composite beams. International Journal of Steel Structures, 9(4), 301-313.
  • [20] (AFNOR), A. F. d. N. (2002). Eurocode 3 «Calcul des structures en acier» et Document d’Application Nationale-Partie 1-1: Règles générales et règles pour les bâtiments (Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings).
  • [21] Rajendran, S., & Kumar, S. (2017). Design of semi-rigid steel-concrete composite frames for seismic performance. J Struct Eng (SERC, Madras) 44(136-147).
  • [22] Anderson, D., Aribert, J. M., Bode, H., & Kronenburger, H. J. (2000). Design rotation capacity of composite joints. Struct. Eng, 78(25-29).
  • [23] Hensman, J., & Nethercot, D. (2001). Numerical study of unbraced composite frames: generation of data to validate use of the wind moment method of design. Journal of Constructional Steel Research, 57(7), 791-809.
  • [24] Standard, B. (2004). Eurocode 8: design of structures for earthquake resistance. Part I: general rules, seismic actions and rules for buildings.
  • [25] Newmark, N. M., & Hall, W. J. (1982). Earthquake spectra and design (C. E. E. R. I. Berkeley Ed. First Edition ed.).
  • [26] Mwafy, A., & Elnashai, A. S. (2001). Static pushover versus dynamic collapse analysis of RC buildings. Engineering Structures, 23(5), 407-424.
  • [27] Monavari, B., & Massumi, A. (2012). Estimating displacement demand in reinforced concrete frames using some failure criteria. International Journal of Advanced Structural Engineering, 4(1), 4.
  • [28] Balendra, T., & Huang, X. (2003). Overstrength and ductility factors for steel frames designed according to BS 5950. Journal of Structural Engineering, 129(8), 1019-1035.
  • [29] FEMA-356 : Prestandard and commentary for the Seismic rehabilitation of Buildings (2000).
  • [30] SAP2000 (2009) Three dimensional static and dynamic finite element analysis and design of structures V14. Computers and Structures Inc, Berkeley, California.
  • [31] Thermou, G., Elnashai, A. S., Plumier, A., & Doneux, C. (2004). Seismic design and performance of composite frames. Journal of Constructional Steel Research, 60(1), 31-57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e54f2cd-a9ae-4404-ac01-202d1a47847f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.