PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetic flux leakage method of railway rails defects diagnostics and its place among mobile means of non-destructive testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The task of mobile railway tracks defects diagnostics is to identify and recognize dangerous defects in order to prevent possible accidents. A review of the methods for controlling the physical and mechanical characteristics of metal constructions of engineering objects of long-term exploitation, which are used under different temperature regimes and conditions, is carried out in Among the described non-destructive methods on the used physical fields are allocated: magnetic, acoustic, electromagnetic, thermal and electrical. Electromagnetic methods are successfully used in various industries, such as the railway industry, the metal-working industry, the drilling, nuclear waste storage and so on. In particular, in the railway industry, using the technique of measuring the electromagnetic field of an alternating current, checks of carriages, wheel pairs and tracks are carried out. Recently, hybrid systems of diagnostics on the basis of carriages-defectoscopes are actively used to detect defects in railway tracks while simultaneously using magnetic, ultrasonic, visual-measuring and optical methods of non-destructive control. The high efficiency of new methods for constructing the information diagnostic system (IDS) of mobile magnetic railway tracks defectoscopy objectively depends on the successful solution of the certain contradiction: this is the provision of high resolution and sensitivity of IDS for the detection, differentiation and classification of the defects signals – on the one hand, and on the other hand – reduction of the time allocated for the defectoscopic examination in the conditions of various obstacles and the need for defects detection in the early stages of their development. Solving this contradiction with the use of modern methods of railway tracks defects signals processing and new small size multichannel and component sensors forms the content of an important application problem, which is considered in this article.
Rocznik
Tom
Strony
105--119
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
autor
  • Lviv Polytechnic National University
  • Lviv Polytechnic National University
autor
  • Lviv Polytechnic National University
  • Lviv Polytechnic National University
  • Lviv Polytechnic National University
Bibliografia
  • 1. Antipov A., Markov A.: Automation of the analysis of signals of magnetodynamic control of rails, NDT World Review, № 2(64), June 2014, s. 25-30.
  • 2. Bojarczak P.: Wizyjna diagnostyka toru kolejowego, Monografia, Radom ITE – PIB, Radom 2013, p. 146.
  • 3. Carriages-defectoscopes VD-UMT-1: Electronic resource, [access: 9 October 2017], available on https://tvema.all.biz/vagony-defektoskopy-vdumt-1-g874151.
  • 4. Carriages-defectoscopes VD-UMT-2: Electronic resource, [access: 9 October 2017], available on https://tvema.ru/516.
  • 5. Clark R., Singh S., Haist C.: Ultrasonic characterisation of defects in rails, Insight, Vol. 44, № 6, June 2002, p. 341–347.
  • 6. Combined carriage-defectoscope: Electronic resource, [access: 9 October 2017], available on http://vsz.gomel.by/index.php/ru/vagons/specialnogo-naznacheniya/252-sovmeschennyi-vagondefektoskop.html.
  • 7. Gaynor T. and others: Reduction in Fatigue Failures through Crack Detection by Alternating Current Field Measurements, IADC/SPE Drilling Conference, New Orleans (Louisiana, USA) 12-15 March 1996, IADC/SPE 35033 Conference Paper.
  • 8. Halileev P.A: Birth of Nondestructive Testing, Defektoskopiya, № 12, 1999, p. 73–82.
  • 9. Howitt M.: Bombardier brings ACFM into the Rail Industry, Insight, Vol. 44, № 6, June 2002, p. 379–382.
  • 10. Hughes G., Gittleman M.: A Robotic End Effector for Visual and Electromagnetic Inspection of Waste Storage Tank Walls, The ANS 6th Topical Meeting on Robotics and Remote Systems, American Nuclear Society Inc., La Grange Park, (IL, USA) 1995, p. 347–354.
  • 11. INNOTRACK (Innovative Track Systems) D4.4.1 - Rail Inspection Technologies, Integrated Project no. TIP5-CT-2006-031415, University of Birmingham, Great Britain 2008, p. 42.
  • 12. Karpash А.: Analysis of known methods for controlling the physical and mechanical characteristics of metal, Oil and Gas Energy: All-Ukrainian Sci.-Tech. Journ., № 1(17), IFNTUNG, IvanoFrankivsk (Ukraine) 2012, p. 70–82.
  • 13. Kononov O. and others: Defectoscopic complex of magnetic carriage-defectoscope, Path & track economy, № 5, Moscow 2000, p. 23–25.
  • 14. Krull R. and others: Eddy-current detection of head checks on the gauge corners of rails: Recent results, 6th International Conference & Exhibition on Railway Engineering, CD, Edinburgh: Engineering Technics Press, London 2003, 8 p.
  • 15. Krull R. and others: Non-destructive testing of rails today and in the future, ZEVrail Glasers Annalen, nr. 127, 2003, p. 286–296.
  • 16. Lesiak P.: Mobilna diagnostyka szyn w torze kolejowym, Wydawnictwo Politechnika Radomska, seria monografie, nr. 116, Radom 2008, s. 202.
  • 17. Lesiak P. Migdal M.: Cluster analysis of head checking flaws in railway rails subjected to ultrasound, Archives of Transport, nr. 21, 2009, p. 51–65.
  • 18. Lesiak P., Bojarczak P.: Application of wavelets and fuzzy sets to the detection of head-checking defects in railway rails, 10th Conference on Transport Systems Telematics (TST’2010), Communications in Computer and information Science 104, Pub.: Springer-Verlag Berlin Heidelberg, Katowice - Ustron (Poland) 20-23 October 2010, p. 327–334.
  • 19. Lesiak P., Radziszewski A.: Diagnostyka szyn metodą magnetycznej pamięci metalu, Prace Naukowe Politechniki Radomskiej, Elektryka, nr. 2(8) 2004, Radom 2004, s. 103–110.
  • 20. Lesiak P., Bojarczak P.: Application of neural classifier to railway flaw detection in the method of metal magnetic memory, The 6th International Conference „Environmental Engineering”, Selected Papers, Vol. 2, Vilnius (Lithuania) 26-27 May 2005, pp. 744-747.
  • 21. Lesiak P., Bojarczak P.: Przetwarzanie i analiza obrazów w wybranych badaniach defektoskopowych, Monograficzna seria wydawnicza Biblioteka Problemów Eksploatacji, Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – PIB, Radom 2012, s. 185.
  • 22. Lesiak P., Szumiata T., Wlazło M.: Laser scatterometry for detection of squat defects in railway rails, The Archives of Transport, Vol. 33, Issue 1, Warszawa 2015, s. 47-56.
  • 23. Lesiak P., Sokołowski A., Wlazło M.: Cross-correlation function in identifying head checking defects of the railway rails, Diagnostyka, Vol.18, nr 2, 2017, s. 65-73.
  • 24. Lugg M., Topp D.: Recent developments and applications of the ACFM inspection method and ACSM stress measurement method, 9th European Conference on NDT, Berlin (Germany) September 2006, Tu. 3.6.5.
  • 25. Lugg M.: Applications of ACFM for Weld Inspection by ROV, Singapore International NDT Conference & Exhibition, Singapore 3-4 November 2011, s. 8.
  • 26. Lugg M.: The First 20 years of the A.C. field Measurement Technique, 18-th World Conference on Non-Destructive Testing, vol. 1, Durban (South Africa) 16-20 April 2012, s. 494–500.
  • 27. Magnetic flaw detectors of the inventor F.M. Karpov, VNTM, Moscow 1939.
  • 28. Magnetizing system. OOO NPF „Polus-N”: Electronic resource, [dostęp: 9 October 2017], available on http://www.polus-n.com/defectoscop.html.
  • 29. Markov A., Antipov A.: Magnetodynamic method for rails Inspection, NDT World Review, nr 3(57), September 2012, s. 66-71.
  • 30. Matiieshyn Yu. and others: Modern methods of mobile diagnostics of railway tracks defects, 6th International Conference Advanced Rail Technologies (ART 2017), Warsaw (Poland) 15-16 November 2017, s. 71.
  • 31. Merezhin N., Maksimov M., Legin A.: Experimental studies of rails magnetization system using permanent magnets, Izvestia of Southern Federal University – Technical sciences, nr 11 (160), Rostovon-Don (Russia) November 2014, pp. 135-145.
  • 32. Nichoga V. i in.: Kierunki w modernizacji lwowskiego wagonu-defektoskopu magnetycznego przy zastosowaniu magneto-dynamicznej metody diagnostyki szyn torów kolejowych, Międzynarodowa konferencja naukowa „Transport XXI wieku”, Arłamów (Polska) 30 sierpnia - 2 września 2016 r., s. 339-340.
  • 33. Nichoga V., Dub P., Storozh I.: Component sensors for magnetic diagnostics of railroad track rails technical condition, Information and control systems on the railway transport, № 3, Kharkiv (Ukraine) 2014, s. 34-43.
  • 34. Nichoga V., Storozh I., Vashchyshyn L.: Model of rail crack based on a discrete set of loops with current, Diagnostyka, Vol.14, nr 2, PTDT, Warsawa 2013, s. 67–71.
  • 35. Nichoga V., Storozh I.: Multi-channel magnetic defectoscope rails coupling block, Pat. 77065 Ukraine, МPK G11B 20/10 (2006.01), applicant and patent holder Lviv Polytechnic National University, – nr u201208870, apl. 18.07.2012, publ. 25.01.2013.
  • 36. Nichoga V., Vashchyshyn L., Saldan O.: Analysis of rail defects signals by the Matlab Wavelet Toolbox Programme, Bulletin of Lviv Polytechnic National University – Radioelectronics and Telecommunications, nr 796, Lviv Polytechnic National University, Lviv 2014, s. 8-13.
  • 37. Nichoha V. and others: The magnetic flux leakage method of railway track diagnostics and ways of it modernization, Bulletin of Lviv Polytechnic National University – Radioelectronics and Telecommunications, nr 849, Lviv Polytechnic National University, Lviv 2016, s. 99-116.
  • 38. Pohl R., Krull R., Meierhoffer R.: A new eddy current instrument in a grinding train, 9th European Conference on NDT, Berlin (Germany) September 2006, Poster 178.
  • 39. Rail Inspection: Electronic resource [dostęp: 25 January 2015], available on www.nde-ed.org/AboutNDT/SelectedApplications/RailInspection/RailInspection.htm.
  • 40. Rybkin V. i in.: Classification and catalogue of defects and damages of elements of railway transfers on the railways of Ukraine, CP-0284, Ministry of Infrastructure of Ukraine, State Administration of Railway Transport of Ukraine, Ukrzaliznytsya, Main Department of Tracking, Inpress, Kyiv (Ukraine) 2013, s. 1–108.
  • 41. Rybkin V. I in.: Classification and catalogue of defects and damages of rails on the railways of Ukraine, CP0285, Ministry of Infrastructure of Ukraine, State Administration of Railway Transport of Ukraine, Ukrzaliznytsya, Main Department of Tracking, Inpress, Kyiv (Ukraine) 2013, s. 109-194.
  • 42. Saldan O. and others: Experimental research of signals of defects such as the transverse cracks on the rail imitator, ХІIIth International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET’2016), Lviv-Slavske, (Ukraine) 22–26 February 2016, ps. 222-225.
  • 43. Sperry: Electronic resource [dostęp: 25 January 2015], available on www.sperryrail.com.
  • 44. Storozh I., Nichoga V.: The eight-channel active sensor for magnetic diagnostics of a railway track, Bulletin of Lviv Polytechnic National University – Radioelectronics and Telecommunications, nr 705, Lviv Polytechnic National University, Lviv 2011, s. 171-175.
  • 45. Thomas H. and others: Pioneering inspection of railroad rails with eddy currents, 15th World Conference on NDT, CD, Italian Society for Non Destructive Testing and Monitoring Diagnostics, Roma (Italy) 2000.
  • 46. Th omas H., Heckel T., Hanspach E.: Advantage of a combined ultrasonic and eddy current examination for railway inspection trains, 9th European Conference on NDT, Berlin (Germany) September 2006, Wed. 4.5.3.
  • 47. Topp D., Smith M.: Application of the ACFM inspection method to rail and rail vehicles, Insight, Vol. 47, № 6, June 2005, s. 354-357.
  • 48. Topp D.: Use of the ACFM Inspection Method to reduce Downhole Drillstring Failures, Australia Oil & Gas Conference, 2001.
  • 49. Vlasov V.G., Dubov A.A.: Physical basis of the method of metal magnetic memory, ZAO „TISSO”, Moscow 2004, s. 424.
  • 50. Vorobyov V., Shur E.: Transition to a new quality of non-destructive control of rails, Path & track economy, nr 10, Moscow 2013, s. 24-26.
  • 51. Wilson J., Tian G.: 3D magnetic field sensing for magnetic flux leakage defect characterisation, Insight, Vol. 48, nr 6, June 2006, s. 357-359.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e52627c-3514-41eb-a847-f014b991f2e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.