PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations on heat and momentum transfer in CuO-water nanofluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of investigations on the application of CuO-water nanofluids for intensification of convective heat transfer. Performance of nanofluids with 2.2 and 4.0 vol.% CuO NPs (nanoparticles) content were examined with regard to heat transfer coefficient and pressure losses in case of turbulent flow in a tube. Negligible impact of examined nanofluid on heat transfer improvement was found. Moreover, measured pressure losses significantly exceeded those determined for primary base liquid. The observations showed that application of nanofluid for heat transfer intensification with a relatively high solid load in the examined flow range is rather controversial.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
  • Department of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland
autor
  • Department of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland
  • Department of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland
  • Department of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland
Bibliografia
  • [1] CHOI U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231(1995), 99–103.
  • [2] KARTHIKEYAN N.R., PHILIP J., RAJ B.: Effect of clustering on the thermal conductivity of nanofluids. Mat. Chem. Phys. 109(2008), 50–55.
  • [3] WANG X.Q., MUJUMDAR A.S.: Heat transfer characteristics of nanofluids: A review. Int. J. Thermal Sci. 46(2007), 1–19.
  • [4] LI Y., ZHOU J., TUNG S., SCHNEIDER E., XI S.: A review on development of nanofluid preparation and characterization. Powder Technol. 196(2009), 89–101.
  • [5] BUONGIORNO J., VENERUS D.C. et al.: A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106(2009), 094312-1-14.
  • [6] MEIBODI M.E., VAFAIE-SEFTI M., RASHIDI A.M., AMROLLAHI A., TABASI M., KALAL H.S.: An estimation for velocity and temperature profiles of nanofluids in fully developed turbulent flow conditions. Int. Commun. Heat Mass 37(2010), 895–900.
  • [7] DUANGTHONGSUK W., WONGWISES S.: An experimental study on the heat transfer performance and pressure drop of TiO2 – water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Tran. 53(2010), 334–344.
  • [8] DING Y., ALIAS H., WEN D., WILLIAMS R.A.: Heat transfer of aqueous suspensions of carbon nanotubes. Int. J. Heat Mass Tran. 49(2006), 240–250.
  • [9] HOJJAT M., ETEMAD S. GH., BAGHERI R., THIBAULT J.: Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. Int. J. Thermal Sci. 50(2011), 525-531.
  • [10] KULKARNI D.P., DAS D.K., VAJJHA R.S.: Application of nanofluids in heating buildings and reducing pollution. Appl. Energ. 86(2009), 2566–2573.
  • [11] BUONGIORNO J.: Convective transport in nanofluids. J. Heat Transfer-T. ASME 128(2006), 240–50.
  • [12] PAK B.C., CHO Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 11(1997), 151–170.
  • [13] LEITNER J., SEDMIDUBSKY D.B., DOUSOVA B., STREJC A., NEVRIVA M.: Heat capacity of CuO in the temperature range of 298.15±1300 K. Thermochim. Acta 348(2000), 49-51.
  • [14] PANTZALI M.N., KANARIS A.G., ANTONIADIS K.D., MOUZA A.A., PARAS S.V.: Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int. J. Heat Fluid Fl. 30(2009), 691–699.
  • [15] YOO S.J., FRANCE D.M., TARSHISH T.M.: Post-critical heat flux swirl flow heat transfer with two refrigerants and water. J. Thermophys. Heat Tr. 11(1997), 189–195.
  • [16] GNIELINSKI V.: Heat transfer coefficients for turbulent flow in concentric annular ducts. Heat Transfer Eng. 30(2009), 431–436.
  • [17] PANTZALI M.N., MOUZA A.A., PARAS S.V.: Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem. Eng. Sci. 64(2009), 3290–3300.
  • [18] KOSTIC M.: On turbulent drag and heat transfer reduction phenomena and heat transfer enhancement in non-circular duct flow of certain non-Newtonian fluids. Int. J. Heat Mass Tran. 37(1994), 133–147.
  • [19] KO G.H., HEO K., LEE K., KIM D.S., KIM Ch., SOHN Y., CHOI M.: An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. Int. J. Heat Mass Tran. 50(2007), 4749–4753.
  • [20] FOTUKIAN S.M., NASR ESFAHANY M.: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int. Commun. Heat Mass 37(2010), 214–219.
  • [21] CIEŚLIŃSKI J.T., KACZMARCZYK T.Z.: Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation. Arch. Termodyn. 35(2014), 2, 3–20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e51fd12-ca11-4e2f-91e2-07b7e9fcbe96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.