Identyfikatory
Warianty tytułu
Characterization of intermolecular interactions : from dimers to microsolvation models
Języki publikacji
Abstrakty
Intermodular interactions play an important role in many processes at the molecular level. In the contemporary science, there is a growing interest concerning the characteristics of such interactions. Therefore, the computational chemistry can provide answers to many questions, which could not be answered using experimental methods. The Symmetry-Adapted Perturbation Theory (SAPT) method was applied to characterize the energy partitioning in dimers, trimers and microsolvation models. The investigated complexes belong to various classes of compounds, e.g. • dimers of: NH3 ˑˑˑHX, HF-pyridine, cycloalkanes, hypohalous acids; • trimers of: NH3 ˑˑˑNH3ˑˑˑHF or NH3ˑˑˑHFˑˑˑHF; • microsolvation models (biotin - water molecules). The current study summarizes recent years of our research devoted to the intermolecular interactions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
645--662
Opis fizyczny
Bibliogr. 30 poz., schem., tab., wykr.
Twórcy
autor
- Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14, 50-383 Wrocław
autor
- Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
- [1] G. Chałasiński, M. Szczęśniak, Chem. Rev., 2000, 100, 4227.
- [2] M.H. Kolář, P. Hobza, Chem. Rev., 2016, 116, 5155.
- [3] G. Chałasiński, M. Gutowski, Chem. Rev., 1988, 88, 943.
- [4] L.C. Gilday, S.W. Robinson, T.A. Barendt, M.J. Langton, B.R. Mullaney, P.D. Beer, Chem. Rev., 2015, 115, 7118.
- [5] H. Wang, W. Wang, W.J. Jin, Chem. Rev., 2016, 116, 5072.
- [6] M. Jabłoński, M. Palusiak, J. Phys. Chem. A, 2012, 116, 2322.
- [7] J. Lieffrig, O. Jeannin, T. Guizouarn, P. Auban-Senzier, M. Fourmigué, Cryst. Growth Des., 2012, 12, 4248.
- [8] M. Jabłoński, J. Mol. Struct. (Theochem), 2010, 948, 21.
- [9] M. Jabłoński, Comput. Theor. Chem., 2012, 998, 39.
- [10] S.J. Grabowski, ChemPhysChem, 2019, 20, 565.
- [11] B.G. de Oliveira, PhysChemChemPhys, 2013, 15, 37.
- [12] H. Margenau, N.R. Kestner, Ed. D. Ter Haar, Theory of Intermolecular Forces. 2nd Edition, International Series of Monographs in Natural Philosophy, Pergamon, 1969.
- [13] M. Lehn, Science, 1993, 260, 1762.
- [14] Z. Latajka, H. Ratajczak, J. Murto, W.J. Orville-Thomas, J. Mol. Struct., 1989, 194, 45.
- [15] Z. Latajka, S. Scheiner, J. Phys. Chem., 1990, 94, 217.
- [16] J. Lundell, M. Räsänen, Z. Latajka, J. Phys. Chem., 1993, 97, 1152.
- [17] Z. Latajka, J. Mol. Struct. THEOCHEM, 1991, 251, 245.
- [18] B. Jeziorski, R. Moszyński, К. Szalewicz, Chem. Rev., 1994, 94, 1887.
- [19] B. Jeziorski, R. Moszyński, A. Ratkiewicz, S. Rybak, K. Szalewicz, H. L. Williams, w: Methods and Techniques in Computational Chemistry: METECC94, ed. E. Clementi, STEF, Cagliari, 1993, Vol. B, p. 79.
- [20] M. Parker, L.A. Burns, R.M. Parrish, A.G. Ryno, C.D. Sherrill, J. Chem. Phys., 2014, 140, 094106.
- [21] J.J. Panek, A. Jezierska, J. Phys. Chem. A, 2007, 111, 650.
- [22] M. Biczysko, Z. Latajka, Chem. Phys. Lett., 1999, 313, 366.
- [23] M. Biczysko, Z. Latajka, J. Phys. Chem. A, 2002, 106, 3197.
- [24] J.J. Panek, Chem. Phys. Lett., 2015, 640, 147.
- [25] D. Nijveldt, A. Vos, Acta Crystallogr. B, 1988, 44, 296.
- [26] A. Stein, C. W. Lehmann, P. Luger, J. Am. Chem. Soc., 1992, 114, 7684.
- [27] J.J. Panek, S. Berski, Chem. Phys. Lett., 2008, 467, 41.
- [28] F. Jensen, Introduction to Computational Chemistry, 2nd Edition, John Wiley & Sons Ltd. 2007.
- [29] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, J. Chem. Phys., 1983, 79, 926.
- [30] A. Jezierska, J.J. Panek, J. Mol. Model., 2019, 25, 361.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e500e33-f89e-4d21-9a44-8ca142b8532f