PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on surface roughness and kerf analysis in abrasive water jet machining of silicon carbide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Machining silicon carbide (SiC) is challenging due to its brittle and maximum tensile nature. Lapping or laser beam are done with a high cost of manufacturing and low material removal rates. Water abrasive jet cutting is a promising candidate since the machining temperatures and processing force of ceramics are extremely low. Investigation into the abrasive water jet machining of silicon carbide is carried out in the present work. Design/methodology/approach: The variations in traverse speed while abrasive water jet cutting of silicon carbide and its effect on the surface roughness and kerf characteristics are studied. Silicon Carbide abrasive material is used as garnet consisting of 80 mesh. The surface roughness was calculated along with the depth of the cut made during the processing. Findings: The outcomes demonstrated that the traverse speed is more effective upon the surface roughness and is an important factor that damages the top kerf width and the kerf taper angle. Research limitations/implications: Based on the hardness and thickness of the SiC plate, the taper angle is high, and for a feed rate of 10 mm/min, the surface roughness is low. Less thickness of the SiC plate could have a lower taper angle than with high thickness. The erosive force is provided by abrasive material along with the jet stream. Practical implications: Water abrasive fine jet could effectively machinate silicon carbide ceramic material with a better surface finish accurately. Suitable surface roughness with higher productivity can be attained with medium traverse speed. Originality/value: The effect of process parameters on kerf taper angle and top kerf width in the abrasive water jet machining of silicon carbide is explored, considering surface roughness as an important output parameter.
Rocznik
Strony
30--35
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College Sivakasi, Tamilnadu, 626005, India
  • Department of Mechanical Engineering, Jayaraj Annapakiam CSI College of Engineering, Nazareth, Thoothukudi, Tamil Nadu, 628617, India
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College Sivakasi, Tamilnadu, 626005, India
autor
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College Sivakasi, Tamilnadu, 626005, India
autor
  • Department of Computer Science and Engineering, Francis Xavier Engineering College, Tirunelveli, 627002, India
autor
  • Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603013, India
Bibliografia
  • [1] M.P. Garg, A. Jain, G. Bhushan, Modelling and multi objective optimization of process parameters of WEDM using non dominated sorting algorithm, Proceedings of Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture 226/12 (2012) 1986-2001. DOI: https://doi.org/10.1177/0954405412462778
  • [2] M.P. Garg, A. Jain, G. Bhushan, Multi-objective optimization of process parameters in wire electric discharge machining of Ti-6-2-4-2 alloy, Arabian Journal of Science And Engineering 39 (2014) 1465- 1476. DOI: https://doi.org/10.1007/s13369-013-0715-x
  • [3] M.A. Khan, H. Soni, P.M. Mashinini, M. Uthayakumar, Abrasive water jet cutting process form machining metals and composites for engineering applications: A review, Engineering Research Express 3 (2011) 022004. DOI: https://doi.org/10.1088/2631-8695/abfe98
  • [4] J. Wang, D.M. Guo, The cutting performance in multipass abrasive waterjet machining of industrial ceramics, Journal of Materials Processing Technology 133/3 (2003) 371-377. DOI: https://doi.org/10.1016/S0924-0136(02)01125-1
  • [5] M. Hashish, W.V. Loscutoff, P. Reich, Cutting with Abrasive Waterjets, Proceedings of the Second U.S. Water Jet Conference, Rolla, Missouri, 1983.
  • [6] N.R.J. Hynes, V. Prabhu, P. Nagaraj, Joining of hybrid AA6063-6SiCp-3Grp composite and AISI 1030 steel by friction welding, Defence Technology 13/5 (2017) 338- 345. DOI: https://doi.org/10.1016/j.dt.2017.05.014
  • [7] N.R.J. Hynes, R. Kumar, R. Tharmaraj, P.S. Velu, Production of aluminium metal matrix composites by liquid processing methods, AIP Conference Proceedings 1728 (2016) 020558. DOI: https://doi.org/10.1063/1.4946609
  • [8] G. Sundar, N.R.J. Hynes, Reinforcement in aluminium metal matrix composites, AIP Conference Proceedings 2142 (2019) 070006. DOI: https://doi.org/10.1063/1.5122398
  • [9] G. Sundar, N.R.J. Hynes, Corrosion issues in metal matrix composites & Bi-metals, AIP Conference Proceedings 2142 (2019) 070007. DOI: https://doi.org/10.1063/1.5122399
  • [10] J.P. Annaraj, N. Bose, N.R.J Hynes, A review on mechanical and tribological properties of sintered copper matrix composites, AIP Conference Proceedings 2142 (2019) 070027. DOI: https://doi.org/10.1063/1.5122419
  • [11] N.R.J. Hynes, R. Kumar, Electrochemical Machining of Aluminium Metal Matrix Composites, Surface Engineering and Applied Electrochemistry 54 (2018) 367-373. DOI: https://doi.org/10.3103/S1068375518040087
  • [12] D.K. Shanmugam, S.H. Masood, An investigation on kerf characteristics in abrasive water jet cutting of layered composites, Journal of Materials Processing Technology 209/8 (2009) 3887-3893. DOI: https://doi.org/10.1016/j.jmatprotec.2008.09.001
  • [13] M. Palleda, A study of taper angles and material removal rates of drilled holes in the abrasive water jet machining process, Journal of Materials Processing Technology 189/1-3 (2007) 292-295. DOI: https://doi.org/10.1016/j.jmatprotec.2007.01.039
  • [14] A.A. Khan, M.M. Haque, Performance of different abrasive materials during abrasive water jet machining of glass, Journal of Materials Processing Technology 191/1-3 (2007) 404-407. DOI: https://doi.org/10.1016/j.jmatprotec.2007.03.071
  • [15] F. Wang, J. Ding, Z. Chen, Statistical Analysis of the Progressive Failure Behavior for Fiber-Reinforced Polymer Composites under Tensile Loading, Polymer 6/1 (2014) 145-159. DOI: https://doi.org/10.3390/polym6010145
  • [16] L. Chen, E. Siores, W.C.K. Wong, Kerf characteristics in abrasive water jet cutting of ceramic materials, International Journal of Machine Tools and Manufacture 36/11 (1996) 1201-1206. DOI: https://doi.org/10.1016/0890-6955(95)00108-5 [17] P. Kearey, Dictionary of Geology, Penguin Group, London and New York, 2001.
  • [18] Ç. Hasan, M.Ç. Said, N. Mustafa, The investigation of marble cutting parameters for energy consumption, International Journal of Mathematical Models and Methods in Applied Sciences 2/4 (2008) 463-472.
  • [19] B.M. Kantha, O.V.K. Chetty, A study on the use of single mesh size abrasives in abrasive water jet machining, The International Journal Advanced Manufacturing Technology 29 (2006) 532-540. DOI: https://doi.org/10.1007/s00170-005-2536-x
  • [20] A. Hascalik, U. Caydas, H. Gurun, Effect of traverse speed on abrasive water jet machining of Ti-6Al-4V alloy. Materials and Design 28/6 (2007) 1953-1957. DOI: https://doi.org/10.1016/j.matdes.2006.04.020
  • [21] N.R.J. Hynes, R. Sankaranarayanan, R. Tharmaraj, C.I. Pruncu, D. Dispinar, A comparative study of the mechanical and tribological behaviours of different aluminium matrix–ceramic composites, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (2019) 330. DOI: https://doi.org/10.1007/s40430-019-1831-7
  • [22] N.R.J. Hynes, S. Raja, R. Tharmaraj, C.I. Pruncu, D. Dispinar, Mechanical and tribological characteristics of boron carbide reinforcement of AA6061 matrix composite, Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (2020) 155. DOI: https://doi.org/10.1007/s40430-020-2237-2
  • [23] L.M. Hlavac, B. Strnadel, J. Kalicinsky, L. Gembalova, The model of product distortion in AWJ cutting, The International Journal Advanced Manufacturing Technology 62 (2012) 157-166. DOI: https://doi.org/10.1007/s00170-011-3788-2
  • [24] L.M. Hlavac, Revised Model of Abrasive Water Jet Cutting for Industrial Use, Materials 14/14 (2021) 4032. DOI: https://doi.org/10.3390/ma14144032
  • [25] L.M. Hlavac, I.M. Hlavacova, S. Plancar, T. Krenicky, V. Geryk, Deformation of products cut on AWJ x-y tables and its suppression. IOP Conference Series: Materials Science and Engineering 307 (2018) 012015. DOI: https://doi.org/10.1088/1757-899X/307/1/012015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e4f2dbb-0ac5-4f91-b99f-edf070a9ceaf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.