Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines the uplink and downlink com-munication in a structured coded nonorthogonal multiple access (NOMA) in the context of cognitive radio networks (CRNs). Due to the ever-increasing demand for spectrum-efficient communi-cation systems, NOMA has emerged as an effective approach to enhance spectral efficiency by allowing multiple users to share the same frequency resources. Furthermore, CRN also improves spectrum utilization by enabling dynamic spectrum access while primary users are present. This work presents a method that can maximize the spectral efficiency by combining NOMA and CRN mechanisms. The suggested system is evaluated in terms of throughput, spectral efficiency, and bit error rate (BER). The collected results show that the proposed strategy performs better in reducing data mistakes when two users access the spectrum at different signal-to-noise ratios (SNR), with a 7 dB improvement for 1st user and a 2.5 dB improvement for the 2nd user, respectively, in the downlink scenario. Next, the exact BER expressions for both coded and uncoded uplink NOMA systems are introduced. As a result, the proposed system demonstrates superior performance and needs only 11 dB to reach 1 × 10−6 of BER while the uncoded system cannot operate in this harsh environment and the BER is fixed at 0.25 dB.
Rocznik
Tom
Strony
35
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
autor
- University of Sumer, Rifaee, Iraq
autor
- College of Pharmacy, Mosul, Iraq
autor
- Ninevah University, Mosul, Iraq
Bibliografia
- [1] J. Mitola and G. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, 1999. [Online]. Available: https://doi.org/10.1109/98.788210
- [2] J. Mitola, “Cognitive radio. an integrated agent architecture for software defined radio.” PhD Dissertation, KTH, Stockholm, Sweden, 2002.
- [3] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74-81, 2015. [Online]. Available: https://doi.org/10.1109/MCOM.2015.7263349
- [4] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys & Tut., vol. 20, no. 3, pp. 2294-2323, 2018. [Online]. Available: https://doi.org/10.1109/COMST.2018.2835558
- [5] Y. Chen, L. Wang, and B. Jiao, “Cooperative multicast non-orthogonal multiple access in cognitive radio,” in 2017 IEEE Int. Conf. on Commun. (ICC), 2017. [Online]. Available: https://doi.org/10.1109/ICC.2017.7996607
- [6] H. T. Huong Giang, P. Duy Thanh, and I. Koo, “Dynamic power allocation scheme for noma uplink in cognitive radio networks using deep q learning,” in 2020 Int. Conf. on Inf. and Commun. Technol. Convergence (ICTC), 2020, pp. 137-142. [Online]. Available: https://doi.org/10.1109/ICTC49870.2020.9289435
- [7] D.-T. Do, A.-T. Le, and B. M. Lee, “NOMA in cooperative underlay cognitive radio networks under imperfect SIC,” IEEE Access, vol. 8, pp. 86 180-86 195, 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2992660
- [8] T. M. C. Chu and H.-J. Zepernick, “Performance analysis of a cognitive radio assisted cooperative NOMA UAV system,” in 2024 IEEE 25th Int. Symp. on a World of Wireless, Mobile and Multimedia Netw. (WoWMoM), 2024, pp. 51-56. [Online]. Available: https://doi.org/10.1109/WoWMoM60985.2024.00020
- [9] H. B. Salameh, S. Abdel-Razeq, and H. Al-Obiedollah, “Integration of cognitive radio technology in noma-based B5G networks: State of the art, challenges, and enabling technologies,” IEEE Access, vol. 11, pp. 12 949-12 962, 2023.
- [10] H. Yahya, A. Ahmed, E. Alsusa, A. Al-Dweik, and Z. Ding, “Error rate analysis of NOMA: Principles, survey and future directions,” IEEE Open Journal of the Commun. Society, 2023. [Online]. Available: https://doi.org/10.1109/OJCOMS.2023.3296061
- [11] R. G. Gallager, “Low-density parity-check codes,” IRE Trans.Inf. Theory, vol. 8, no. 1, pp. 21-28, 1962. [Online]. Available: https://doi.org/10.1109/TIT.1962.1057683
- [12] F. Baldini and P. Farrell, “Coded modulation based on rings of integers modulo-q. 2. convolutional codes,” IEE Proc.-Commun., vol. 141, no. 3,pp. 137-142, 1994. [Online]. Available: https://doi.org/10.1049/ip-com:1994119
- [13] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting coding and decoding: Turbo-codes. 1,” in Proc. of ICC’93-IEEE Int. Conference on Commun., vol. 2. IEEE, 1993, pp. 1064-1070. [Online]. Available: https://doi.org/10.1109/ICC.1993.397441
- [14] W. Abd-Alaziz, M. Johnston, and S. Le Goff, “Non-binary turbo codes on additive impulsive noise channels,” in 2016 10th Int. Symp. On Commun. Syst., Netw. and Digit. Signal Process. (CSNDSP). IEEE, 2016, pp. 1-5. [Online]. Available: https://doi.org/10.1109/CSNDSP.2016.7574024
- [15] ——, “Non-binary trellis codes on the synthetic statistical MIMO power line channel,” in 2018 IEEE Int. Symp. on Power Line Commun. and its Appl. (ISPLC). IEEE, 2018, pp. 1-5. [Online]. Available: https://doi.org/10.1109/ISPLC.2018.8360199
- [16] W. Abd-Alaziz, B. Abood, R. M. Muttasher, M. A. Fadhel, and B. A. Jebur, “Exact BER performance analysis of an elementary coding techniques for NOMA system on AWGN channel.” Radioengineering, vol. 33, no. 1, 2024. [Online]. Available: https://doi.org/10.13164/re.2024.0045
- [17] J. Wang, C. Jiang, and L. Kuang, “Iterative NOMA detection for multiple access in satellite high-mobility communications,” IEEE J. on Sel. Areas in Commun., vol. 40, no. 4, pp. 1101-1113, 2022. [Online]. Available: https://doi.org/10.1109/JSAC.2022.3143254
- [18] M. S. Idris, D. M. Ali, N. I. A. Razak, A. Idris, and H. Ahmad, “Performance analysis of NOMA using different coding techniques,” in J. of Phys.: Conf. Ser., vol. 1502, no. 1. IOP Publishing, 2020, p. 012002. [Online]. Available: https://doi.org/10.1088/1742-6596/1502/1/012002
- [19] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE commun. surveys & tut., vol. 11, no. 1, pp. 116-130, 2009. [Online]. Available: https://doi.org/10.1109/SURV.2009.090109
- [20] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” in Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals, Sys. and Comput., 2004., vol. 1. Ieee, 2004, pp. 772-776.
- [21] G. Ganesan and Y. Li, “Agility improvement through cooperative diversity in cognitive radio,” in GLOBECOM’05. IEEE Global Telecommun. Conf., 2005., vol. 5. IEEE, 2005, pp. 5-pp. [Online]. Available: https://doi.org/10.1109/GLOCOM.2005.1578213
- [22] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Spectrum sensing measurements of pilot, energy, and collaborative detection,” in Milcom 2006-2006 IEEE Mil. Commun. Conf. IEEE, 2006, pp. 1-7. [Online]. Available: https://doi.org/10.1109/MILCOM.2006.301994
- [23] W. Abd-Alaziz, B. A. Jebur, H. Fakhrey, Z. Mei, and K. Rabie, “A low-complexity coding scheme for NOMA,” IEEE Sys. J., vol. 17, no. 3, pp. 4464-4473, 2023. [Online]. Available: https://doi.org/10.1109/JSYST.2023.3262174
- [24] A. Goldsmith, Wireless communications. Cambridge Univ. press, 2005. [Online]. Available: https://doi.org/10.1017/CBO9780511841224
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e49d10a-a966-463f-a04e-9c231f309ee4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.