PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of remote sensing data to support the seismic safety assessment of reinforced concrete buildings affected by slow‑moving landslides

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different forms of hazard can affect structures throughout their existence. The occurrence of a seismic event in areas exposed to different risks or already affected by other phenomena is highly likely, especially in countries characterized by high seismicity and equally high hydrogeological risk, as Italy. Nevertheless, the seismic safety assessment of reinforced concrete (RC) structures is commonly carried out considering the seismic action only, generally applied to an analytical model, neglecting the stress-strain state induced by previous ongoing phenomena. The aim of this work is to highlight the importance of the seismic safety assessment in a multi-hazard analysis, cumulating the action coming from two different hazards: landslide and earthquake. An existing RC building, located in an area affected by an intermittent landslide phenomenon with slow kinematics, that may also be subjected to strong earthquakes, is used as case study. The Differential Synthetic Aperture Radar Interferometry (DInSAR) approach is used to monitor the evolution in time of the landslide. DInSAR deformation data are used to detect surface ground movements applied to building foundations. A non-linear static analysis procedure is implemented for the code-based seismic safety assessment, in two different scenarios. The seismic assessment of the case-study building is implemented in a condition of structure deformed only for gravity loads, and, then, in a state of known landslide-induced deformed configuration. A comparison is proposed between the building seismic safety assessment per-formed in both cases, with or without the consideration of the landslide-induced displacements, showing the importance of a multi-hazard evaluation.
Rocznik
Strony
art. no. e88, 1--22
Opis fizyczny
Bibliogr. 77 poz., il., tab., wykr.
Twórcy
  • Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy
autor
  • Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy
  • Department of Earth, Environment and Resources Sciences, University of Naples Federico II, Naples, Italy
  • SINTEMA Engineering Srl, Spin-Off University of Naples Federico II, Naples, Italy
  • SINTEMA Engineering Srl, Spin-Off University of Naples Federico II, Naples, Italy
  • SINTEMA Engineering Srl, Spin-Off University of Naples Federico II, Naples, Italy
  • Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
autor
  • Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy
Bibliografia
  • 1. Liel AB, Haselton CB, Deierlein GG. Seismic collapse safety of reinforced concrete buildings II: Comparative assessment of non ductile and ductile moment frames. J Struct Eng. 2011;137(4):492-502.
  • 2. Fragiadakis M, Vamvatsikos D, Aschheim M. Application of nonlinear static procedures for seismic assessment of regular RC moment frame buildings. Earthq Spectra. 2013;30(2):767-794.
  • 3. Miano A, Sezen H, Jalayer F, Prota A. Performance-based assessment methodology for retrofit of buildings. J Struct Eng. 2019;145(12):04019144.
  • 4. Luo X, Cheng J, Xiang P, et al. Seismic behavior of corroded reinforced concrete column joints under low-cyclic repeated loading. Arch Civ Mech Eng. 2020;20:40.
  • 5. Jiao C, Liu Y, Wei B, et al. Seismic performance of circular reinforced concrete columns subjected to compression, bending and torsion with low and moderate shear span ratio. Arch Civ Mech Eng. 2021;21:135.
  • 6. Vamvatsikos D, Fragiadakis M. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty. Earthq Eng Struct Dyn. 2010;39(2):141-63.
  • 7. Miano A, Jalayer F, Prota A. Considering structural modeling uncertainties using Bayesian cloud analysis. In: 6th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering (COMPDYN 2017), Rhodes Island, Greece, June 15-17, 2017.
  • 8. Jalayer F, Ebrahimian H. Seismic reliability assessment and the nonergodicity in the modelling parameter uncertainties. Earthq Eng Struct Dyn. 2020;49(5):434-457.
  • 9. Peduto D, Pisciotta G, Nicodemo G, Arena L, Ferlisi S, Gullŕ G, Reale D. A procedure for the analysis of building vulnerability to slow-moving landslides. In: 1st IMEKO International Workshop on Metrology for Geotechnics, Benevento, Italy, March 17-18, 2016.
  • 10. Infante D, Confuorto P, Di Martire D, Ramondini M, Calcaterra D. Use of DInSAR data for multi-level vulnerability assessment of urban settings affected by slow-moving and intermittent landslides. Proc Eng. 2016;158:470-475.
  • 11. Infante D, Di Martire D, Confuorto P, Tessitore S, Tňmas R, Calcaterra D, Ramondini M. Assessment of building behavior in slow-moving landslide-affected areas through DInSAR data and structural analysis. Eng Struct. 2019;199:638.
  • 12. Del Soldato M, Solari L, Poggi F, Raspini F, Tomás R, Fanti R, Casagli N. Landslide-induced damage probability estimation coupling InSAR and field survey data by fragility curves. Remote Sens. 2019;11(12):1486.
  • 13. Miano A, Mele A, Calcaterra D, Di Martire D, Infante D, Prota A, Ramondini M. The use of satellite data to support the structural health monitoring in areas affected by slow-moving landslides: a potential application to reinforced concrete buildings. Struct Health Monit. 2021.
  • 14. Arangio S, Calň F, Di Mauro M, Bonano M, Marsella M, Manunta M. An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome. Struct Infrastruct Eng. 2014;10(11):1469-83.
  • 15. Di Carlo F, Miano A, Giannetti I, Mele A, Bonano M, Lanari R, Meda A, Prota A. On the integration of multi-temporal synthetic aperture radar interferometry products and historical surveys data for buildings structural monitoring. J Civ Struct Health Monit.
  • 16. Drougkas A, Verstrynge E, Van Balen K, Shimoni M, Croonenborghs T, Hayen R, Declercq PY. Country-scale InSAR monitoring for settlement and uplift damage calculation in architectural heritage structures. Struct Health Monit 1475921720942120, 2020.
  • 17. Herrera G, Tomás R, Vicente F, Lopez-Sanchez JM, Mallorquí JJ, Mulas J. Mapping ground movements in open pit mining areas using differential SAR interferometry. Int J Rock Mech Min Sci. 2010;47(7):1114-25
  • 18. Giannico C, Ferretti A, Alberti S, Jurina L, Ricci M, Sciotti A. Application of satellite radar interferometry for structural damage assessment and monitoring LifeCycle and Sustainability of Civil Infrastructure Systems. In: 3rd International Symphosium on Life-Cycle Civil Engineering (IALCCE ’12), Vienna, Austria, October 3-6, 2012.
  • 19. Cavalagli N, Kita A, Falco S, Trillo F, Costantini M, Ubertini F. Satellite radar interferometry and in-situ measurements for static monitoring of historical monuments: The case of Gubbio Italy. Remote Sens Environ. 2019;235: 111452.
  • 20. Pitilakis KD, Fotopoulou SD. Vulnerability assessment of buildings exposed to co-seismic permanent slope displacements. XVI ECSMGE Geotechnical Engineering for Infrastructure and Development Edimburgh, September 13-17, 151-174, 2015.
  • 21. Fotopoulou SD, Pitilakis KD. Vulnerability assessment of reinforced concrete buildings at precarious slopes subjected to combined ground shaking and earthquake induced landslide. Soil Dyn Earthq Eng. 2017;93:84-98.
  • 22. Negulescu C, Ulrich T, Baills A, Seyedi DM. Fragility curves for masonry structures submitted to permanent ground displacements and earthquakes. Nat Hazards. 2014;74(3):1461-74.
  • 23. Gabriel AK, Goldstein RM, Zebker HA. Mapping small elevation changes over large areas: differential interferometry. J Geophys Res. 1989;94:9183-91.
  • 24. Colesanti C, Wasowski J. Investigating landslides with space borne synthetic aperture radar (SAR) interferometry. Eng Geol. 2006;88:173-199.
  • 25. Costantini M, Ferretti A, Minati F, Falco S, Trillo F, Colombo D, Costabile S. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens Environ. 2017;202:250-275.
  • 26. Ezquerro P, Del Soldato M, Solari L, Tomás R, Raspini F, Ceccatelli M, Fenandez-Merodo JA, Casagli N, Herrera G, G. Vulnerability assessment of buildings due to land subsidence using InSAR data in the ancient historical city of Pistoia (Italy). Sensors. 2020;20(10):2749.
  • 27. Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B. Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens. 2016;115:78-89.
  • 28. Even M, Schulz K. InSAR deformation analysis with distributed scatterers: a review complemented by new advances. Remote Sens. 2018;10(5):744.
  • 29. Solari L, Del Soldato M, Raspini F, Barra A, Bianchini S, Confuorto P, Crosetto M. Review of satellite interferometry for landslide detection in Italy. Remote Sens. 2020;12(8):1351.
  • 30. Talledo DA, Miano A, Bonano M, Di Carlo F, Lanari R, Manunta M, Stella A. Satellite radar interferometry: potential and limitations for structural assessment and monitoring. J Build Eng. 2022;46:103756.
  • 31. Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003, Gazzetta Ufficiale n. 105, 8 maggio 2003 (in Italian).
  • 32. Di Domenico M, Ricci P, Verderame GM. Empirical calibration of hysteretic parameters for modelling the seismic response of reinforced concrete columns with plain bars. Eng Struct. 2021;112:120.
  • 33. Panagiotakos TB, Fardis MN. Seismic response of infilled RC frames structures. In: 11th world conference on earthquake engineering, Acapulco, México, June 23-28, 1996.
  • 34. DM 17/01/18 (2018) Norme tecniche per le costruzioni, Ministerial Decree (in Italian).
  • 35. Eurocode 8, EN1998-3, Design of structures for earthquake resistance, Part 3: Assessment and retrofitting of buildings, CEN, Brussels, 2005.
  • 36. Cosenza E, Del Vecchio C, Di Ludovico M, Dolce M, Moroni C, Prota A, Renzi E. The Italian guidelines for seismic risk classification of constructions: technical principles and validation. Bull Earthq Eng. 2018;16(12):5905-35.
  • 37. Frascadore R, Di Ludovico M, Prota A, Verderame GM, Manfredi G, Dolce M, Cosenza E. Local strengthening of reinforced concrete structures as a strategy for seismic risk mitigation at regional scale. Earthq Spectra. 2015;31(2):1083-102.
  • 38. Franceschetti G, Migliaccio M, Riccio D, Schirinzi G. SARAS: a synthetic aperture radar (SAR) raw signal simulator. IEEE Trans Geosci Remote Sens. 1992;30(1):110-123.
  • 39. Vassileva M, Giulio Tonolo F, Riccardi P, Lecci D, Boccardo P, Chiesa G. Satellite SAR interferometric techniques in support to emergency mapping. Eur J Rem Sens. 2017;50(1):464-477.
  • 40. Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens. 2001;39(1):8-20.
  • 41. Blanco P. SAR Differential Interferometry for deformation monitoring under a multi-frequency approach, 2009 (PhD Thesis).
  • 42. Sacco P, Battagliere ML, Daraio MG, Coletta A. The COSMOSkyMed constellation monitoring of the Italian territory: the Map Italy project. In: 66th International Astronautical Congress (IAC 2015), Jerusalem, Istrael, October 12-16, 2015.
  • 43. Mora O, Mallorquí JJ, Broquetas A. Linear and non-linear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens. 2003;41:2243-53.
  • 44. Iglesias R, Mallorqui JJ, Monells D, Lopez-Martinez C, Fabregas X, Aguasca A, Gili JA, Corominas J. PSI deformation map retrieval by means of temporal sublook coherence on reduced sets of SAR images. Remote Sens. 2015;7:530-563.
  • 45. Fajfar P. Capacity spectrum method based on inelastic demand spectra. Earthq Eng Struct Dyn. 1999;28(9):979-993.
  • 46. Circolare n. 7 C.S.LL.PP. 21 gennaio 2019 (2019), Commentary to NTC 2018 (in Italian).
  • 47. Eurocode 2, EN 1992-1-1, Design of concrete structures, Part 1-1: General rules and rules for buildings, CEN, Brussels, 2004.
  • 48. Eurocode 8, EN 1998–1, Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings, CEN, Brussels, 2003.
  • 49. Hydro-geomorphological Setting Plan of South Campania River Basin Authority, Via De Gasperi 28, 80133, Naples, Italy, 2012.
  • 50. Calň F, Calcaterr D, Iodice A, Parise M, Ramondini M. Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques. Int J Remote Sens. 2012;33(11):3512-30.
  • 51. Di Martire D, Ramondini M, Calcaterra D. Integrated monitoring network for the hazard assessment of slow moving landslides at Moio della Civitella (Italy). Rendiconti Online Societŕ Geologica Italiana. 2015;35:109-112.
  • 52. Infante D, Confuorto P, Di Martire D, et al. L’utilizzo di dati DIn-SAR per la valutazione delle conseguenze indotte sugli edifici da frane intermittenti a cinematica lenta. XXVI Convegno Nazionale Di Geotecnica. Rome, Italy, June 20-22, 2017 (in Italian).
  • 53. Regio Decreto Legge (R.D.L.) 16 novembre 1939 n°2229 (Suppl. Ord. alla Gazz. Uff. del 18 aprile 1940 n°92) Norme per l'esecuzione delle opere in conglomerato cementizio semplice od armato, 1939 (in Italian).
  • 54. Verderame GM, Stella A, Cosenza E (2001) Le proprietŕ meccaniche degli acciai impiegati nelle strutture in ca realizzate negli anni’60. X Convegno nazionale “L’Ingegneria Sismica in Italia”, Potenza-Matera, 9-13, 2001 (in italian).
  • 55. Verderame GM, Manfredi G, Frunzio G (2001) Le proprietŕ meccaniche dei calcestruzzi impiegati nelle strutture in cemento armato realizzate negli anni ‘60. X Convegno nazionale “L’Ingegneria Sismica in Italia”, Potenza, Matera, September 9-13, 2001 (in Italian).
  • 56. Ricci P, Di Domenico M, Verderame GM. Experimental assessment of the in-plane/out-of-plane interaction in unreinforced masonry infill walls. Eng Struct. 2018;173:960-978.
  • 57. Di Domenico M, Ricci P, Verderame GM. Experimental assessment of the out-of-plane strength of URM infill walls with different slenderness and boundary conditions. Bull Earthq Eng. 2019;17:3959-93.
  • 58. SAP2000 v21.0.2 (2019) Computers and Strucrures, Inc.
  • 59. Setzler EJ, Sezen H. Model for the lateral behavior of reinforced concrete columns including shear deformations. Earthq Spectra. 2008;24(2):493-511
  • 60. Ricci P, Manfredi V, Noto F, Terrenzi M, De Risi MT, Di Domenico M, Spacone E (2019) RINTC-e: towards seismic risk assessment of existing residential reinforced concrete buildings in Italy. In: Proceedings of the 7th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, Crete, Greece, 2019, pp. 24-26.
  • 61. Ricci P, Verderame GM, Manfredi G. Analytical investigation of elastic period of in filled RC MRF buildings. Eng Struct. 2011;33:308-319
  • 62. De Risi MT, Del Gaudio C, Ricci P, Verderame GM. In-plane behaviour and damage assessment of masonry in fills with hollow clay bricks in RC frames. Eng Struct. 2018;168:1.
  • 63. Del Gaudio C, De Risi MT, Ricci P, Verderame GM. Empirical drift-fragility functions and loss estimation for infills in reinforced concrete frames under seismic loading. Bull Earthq Eng. 2019;17(3):1285-1330.
  • 64. Al-Chaar GK. Evaluating strength and stiffness of unreinforced masonry infill structures. ERDC/CERL TR-02-1, 2002.
  • 65. Fardis MN. Seismic design, assessment and retrofitting of concrete buildings: based on EN-Eurocode 8, Vol 8. Springer Science & Business Media, 2009.
  • 66. Mainstone RJ. On the stiffnesses and strengths of infilled frames. Proc Inst Civ Eng. 1971;4:57-90.
  • 67. Fardis MN. Experimental and numerical investigations on the seismic response of RC infilled frames and recommendations for code provisions. ECOEST/PREC8 Report No.6, Laboratorio Nacional de Engenharia Civil Publications, Lisbon, 1996.
  • 68. Ricci P, Di Domenico M, Verderame GM. Out-of-plane seismic safety assessment of URM infills accounting for the in-plane/outof-plane interaction in a nonlinear static framework. Eng Struct. 2019;195:96-112.
  • 69. Calvi GM, Bolognini D. Seismic response of reinforced concrete frames infilled with weakly reinforced masonry panels. J Earthq Eng. 2001;5(2):153-85.
  • 70. Miano A, Mele A, Di Martire D, Infante D, Prota A, Ramondini M. Remote sensing data to support the structural monitoring of RC buildings affected by ground instability phenomena. In: Rivista Italiana di Geotecnica, N. 4/2021. ISSN: 0557-1405. 2021.
  • 71. Ministerial Decree n. 24, 09/01/2020, Sisma Bonus-Linee guida per la classificazione del rischio sismico delle costruzioni nonché le modalitŕ per l'attestazione, da parte di professionisti abilitati, dell'efficacia degli interventi effettuati, 2020 (in italian).
  • 72. Di Lorenzo G, Colacurcio E, Di Filippo A, Formisano A, Massimilla A, Landolfo R. State-of-the-art on steel exoskeletons for seismic retrofit of existing RC buildings. Ingegneria Sismica. 2020;37(1):33-50.
  • 73. Formisano A, Castaldo C, Chiumiento G. Optimal seismic upgrading of a reinforced concrete school building with metalbased devices using an efficient multi-criteria decision-making method. Struct Infrastruct Eng. 2017;13(11):1373-89.
  • 74. Formisano A, Sahoo DR. Steel shear panels as retrofitting system of existing multi-story RC buildings: Case studies. Adv Struct Eng Mech. 2015;1(495–512):2015.
  • 75. Moehle JP. State of research on seismic retrofit of concrete building structures in the US, US-Japan symposium and workshop on seismic retrofit of concrete structures, 2000.
  • 76. Di Ludovico M, Balsamo A, Prota A, Manfredi G. Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure. Struct Eng Mech. 2008;28(6):727-748.
  • 77. Thermou GE, Elnashai AS. Seismic retrofit schemes for RC structures and local-global consequences. Prog Struct Mat Eng. 2006;8(1):1-15.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e499487-d56b-4821-8b05-c5d9204c0b3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.