
INFORMATION
SYSTEMS IN

MANAGEMENT

Information Systems in Management (2018) Vol. 7 (3) 180−189

DOI: 10.22630/ISIM.2018.7.3.3

INTEGRATION OF QUERIES TO HETEROGENEOUS DATA

SOURCES USING LINQ TECHNOLOGY

MARIAN RUSEK
*), JAKUB MAGUZA, WALDEMAR KARWOWSKI

 *)

*)
Department of Informatics, Warsaw University of Life Sciences (SGGW)

Nowadays, the data are available in a variety of formats such as relational data-
base tables, xml files, rdf files or simply text files. Database systems have their own
query languages and tools for the manipulation of data. On the other hand, most of
today's applications are created in languages based on the object-oriented paradigm.
From the level of the programming language it is important to use different sources
of data in a uniform manner. The paper discusses the elements of the various query
languages such as SQL XQuery or SPARQL. And then shows the capabilities of
LINQ and its role in the creation of abstract data access layer. Then the possibilities
of LINQ extension are discussed. As the example, design and implementation of
LINQ provider for Allegro is presented.

Keywords: Query languages, LINQ, extension methods, .NET

1. Introduction

Today we have access to large amounts of data in digital form. The main
sources of data are electronic documents, Web pages, Web services and databases.
However, finding the right information is not always easy. We can search the doc-
uments using text search engines but this requires additional tedious analysis, for
web pages it is possible to use search engines but it also requires additional brows-
ing dozens of result pages. For better structured data sources, there are available
tools for more precise searching. These tools provide query languages which can
help us during search process. The most known query language is SQL (Structured

181

Query Language) a standard for communication with relational databases, stand-
ardized by ISO [1]. Query languages are important in the implementation of infor-
mation management systems. From the other side, currently in system implementa-
tion the biggest role play the programming languages based on the object oriented
paradigm. In general, the query languages like SQL are not integrated with object
oriented programming languages. Especially between object oriented languages
and relational databases, we have so called the object-relational impedance mis-
match. Programmer must every time “immerse” query in the programming lan-
guage used for the application. The query results must be converted to the types
available in the programming language. This means that an application code is not
uniform and developer needs to learn the syntax of query languages. In such situa-
tion, a solution which allows querying various data sources and easy integrates
with object-oriented environment is desired.

The rest of this paper is organized as follows: in Sect. 2 the most important
query languages, together with appropriate data sources are reviewed. In Sect. 3 a
LINQ technology is described. In Sect. 4 an implementation LINQ to Allegro is
presented. We finish with summary and brief remarks in Sect. 5.

2. Query Languages

Users want to find interesting information from the available data source. The
easiest method to do this is to ask about information in natural language. Today
such method is possible. User can type in a search engine sentence in natural lan-
guage, sentence is parsed, key words are recognized, searching is performed and
results are presented. But the use of natural language unfortunately does not give
satisfactory results due to the lack of precision of the everyday spoken language.
Search engines, like Google, have advanced search options which help user defin-
ing more structured query. To define precise query we need well defined query
language. According to Encyclopaedia Britannica, query language, is a computer
programming language used to retrieve information from a database. Wikipedia
provides a broader definition of query language: it is computer language used to
make queries in databases and information systems. This definition stresses that the
data source can be any collection of data in information systems. Unfortunately, to
ask a precise query, it is necessary to know what the data structure is. Ideally, a
query language should allow users to formulate queries in an intuitive way. One
such intuitive way is Query By Example (QBE) [2]. It was defined at IBM for rela-
tional databases but many query languages use this idea. There are many visual
tools which help user construct query, for example Microsoft Access Query Design
Grid [3]. User prepares pattern and asks for “similar” objects to be retrieved from a
database, typically user fills the selected fields in the table, example object, docu-
ment etc., and the database engine returns records containing the information from

182

the filled-in fields. In query languages many depends on how the data are orga-
nized. Specific types of database have their own specific query languages. Men-
tioned earlier SQL is designed for relational databases and is based upon relational
algebra and relational calculus of tuples. For databases from different manufactur-
ers, there are many mutations (dialects) of SQL, with many specific extensions
(Oracle PLSQL, Microsoft Transact SQL etc.). Declarative SQL syntax has be-
come a model for other query languages. XQuery, that is, the XML Query Lan-
guage, is a language created to search XML documents. XQuery is WWW Consor-
tium standard [4]. XML documents have a hierarchical structure and the query
must contain the path to the items. To do that it uses XPath, another WWW Con-
sortium standard [5]. SPARQL is a recursive acronym for SPARQL Protocol and
RDF Query Language. It is query language devoted to data in Resource Descrip-
tion Framework (RDF) format. Similarly to XQuery it is WWW Consortium stand-
ard [6]. RDF itself is based on the idea of making short statements about resources
in the form subject–predicate–object, known as triples and was initially designed
for Semantic Web [7]. We have to note that RDF data model is rather in graph than
hierarchical format. Despite the fact that most of the resources in the RDF are seri-
alized in XML format [8], SPARQL has its own syntax based on triples which is
not based on XQuery. As was said earlier, object-oriented model is most popular in
nowadays applications. However object-oriented databases state now the market
margin and generally they have proprietary query languages. Standard for object-
oriented databases - Object Query Language (OQL) [9] - was defined by Object
Data Management Group but it was never fully implemented in object-oriented
databases. Currently so called NoSQL databases become more popular, but they
have not one data model. NoSQL databases are representing rather wide spectrum
of technologies. Most popular are document databases, they are relatively close to
object-oriented model but do not support inheritance. Document data bases typical-
ly use JSON (Java Script Object Notation) format or its binary form BSON. Unfor-
tunately almost every document database has its proprietary language for queries.
There is an interesting initiative for query and processing language specifically
designed for the JSON data model [10], but there are almost no implementations of
this proposal. Other interesting NoSQL database category is graph databases.
Mentioned earlier RDF data model can be classified in this category. There is
Gremlin, graph traversal language implemented in many graph databases [11]
which is almost standard. At the end of this short review of query languages we
have to note that search engines like Google or Bing have their own APIs for pro-
grammers. Such APIs are really query languages, but their capabilities are similar
to the advanced search properties in search engine [12, 13].

In conclusion we can say that due to the very diverse data formats, there is no
one standard for queries. An additional problem is that the existing query lan-
guages do not integrate well with popular programming languages. From pro-

183

grammers point of view the tool that allows queries in an object-oriented manner is
needed, to provide good integration of programming language with different data
sources.

3. LINQ

LINQ (Language INtegrated Query) is a set of tools to analyze and manipu-
late data collections. It is a Microsoft .NET Framework component that adds native
data querying capabilities to .NET languages, although ports exist for other pro-
gramming languages and environments. This technology came into use in 2007
with the third version of the C# language as part of the .NET Framework 3.5 [14,
15, 16]. LINQ technology is based on generic types, collections which implements
IEnumerable interface, extension methods, anonymous types, delegates and lambda
expressions. The first implementation was LINQ to objects and extension methods
were defined for enumerable collections of objects. The example presented in fig.1
illustrates LINQ to objects idea.

Figure 1. LINQ to objects example

In the example method Split() divides string into array of words (strings) us-
ing space as separator. Array in .NET is IEnumerable and extension method Where
can be called on it. Method Where as an argument takes lambda expression (x =>
x.Length > 4). Result is enumerable and we can call another extension method
OrderBy with next lambda expression, and finally call extension method Select
with lambda expression, this last lambda expression creates anonymous type: pair
of word and its length. The most important methods are Where and Select. We
have to note that there are defined the contextual keywords used in query expres-
sions, equivalent to most important LINQ methods. We can rewrite discussed code
in declarative style (fig.2).

Figure 2. LINQ to objects declarative style example

There are additional LINQ implementations in .NET framework: LINQ to
XML, LINQ to SQL, LINQ to DataSet and LINQ to Entities. There is another is-
sue connected with LINQ implementations, large external data sources cannot be

var longerWords = "SHORT TEXT TO LINQ ANALYSIS".Split()
 .Where(x => x.Length > 4).OrderBy(x => x.Length)
 .Select(x => new { word = x, length = x.Length });

var longerQuery = from w in "SHORT TEXT TO LINQ ANALYSIS".Split()
 where w.Length > 4 orderby w.Length ascending
 select new { word = w, length = w.Length };

184

loaded whole into memory. We have to delay the loading data from the file until
this data will be actually needed. It is essential that such operations should be per-
formed automatically. In .NET framework was introduced keyword yield and
thanks to it we have the automatic deferred execution. For our purpose most inter-
esting is the LINQ to SQL provider. It allows LINQ to be used to query Microsoft
SQL Server databases (or other relational databases with appropriate drivers).
Since SQL Server data may reside on a remote server, and because SQL Server has
its own query engine, LINQ to SQL does not use the query engine of LINQ to ob-
jects. Instead, it converts a LINQ query to a SQL query that is then sent to SQL
Server for processing. Interface IEnumerable is used to iterate through the collec-
tion of objects and is not useful for external data source. For external data sources
like relational database the IQueryable interface was defined [17]. It is useful for
building a query that is translated into language understandable for a given source
for example SQL. IQueryable implements IEnumerable so all the LINQ extension
methods are available. Interface IQueryable (fig.3) defines two important fields of
type Expression and IQueryProvider (fig.4).

Figure 3. Inteface IQueryable. Source: [17]

Abstract Expression class has a few dozen subclasses. Most important are:
BinaryExpression, ConstantExpression. LambdaExpression, MemberExpression,
MethodCallExpression and UnaryExpression. Especiall BinaryExpression gives
possibility to build binary tree, such expression trees are at the core of the LINQ
extensibility mechanism.

Figure 4. Inteface IQueryProvider. Source: [17]

Provider has two methods CreateQuery and ExecuteQuery (fig.4). The ex-
pression tree is handed over to LINQ provider, which adapt the LINQ queries to be
used with the data source. The main task during LINQ implementation is to define

public interface IQueryable : IEnumerable {
 Expression Expression { get; }
 Type ElementType { get; }
 // the provider that created this query
 IQueryProvider Provider { get; }
 }

public interface IQueryProvider{
 IQueryable CreateQuery(Expression expression);
 IQueryable<TElement> CreateQuery<TElement>(Expression expression);

 object Execute(Expression expression);
 TResult Execute<TResult>(Expression expression);
 }

185

proper provider, particularly Execute method. Moreover implementer has to pre-
pare extension method for at least Where clause.

4. LINQ to Allegro

Allegro is a Polish online auction website. It primarily allows the sale of items
owned by the users. Potential buyers can search the site for items of interest to
them. Our goal was to create a custom LINQ provider to be able to browse the
service resources for buyers.

Figure 5. Allegro RSS channels generator page. Source: [18]

186

Allegro allows the exchange of information between service and external
software and developers can integrate their own solutions with the Allegro data.
Allegro provides three ways to take advantage of the service. The first is WebAPI -
web service based on SOAP protocol, the second is REST API and the third RSS
channels. The first two possibilities are requiring an account on the Allegro and
they intended for commercial use by companies offering products for sale. For our
purpose best proved ids RSS service available at [18]. It does not require creating
an account and is totally free. In the figure 5, visual interface for RSS channels
generator is presented. It is easy to generate URL string which can be use as the
pattern during generating LINQ queries. Parameters after which we can search for
are: Title (name of item), SearchInDescription, ExcludeWords, Price, CategoryID,
OfferType, SearchType, CollectInPersonaly, PayU. Those fields can be used in the
Where clause. Unfortunately, there is one problem with CategoryID. Allegro uses
so many categories and subcategories, that the whole category tree consists of
thousands of items. Every category has its own identifier. Preparing the query we
need to choose the proper identifier corresponding to the category with the help of
the WebAPI methods or REST API, it is easier than using the RSS feed. This is not
problem for LINQ implementation but only for an application that uses it. During
testing we had to limit categories to a few basic ones. Example of generated pattern
(fig.6) includes category books about programming (90328).

Figure 6. Allegro RSS pattern

Figure 7. Item from Allegro response

In the response we receive list of items. Each item has the form as in the figure 7.
As we can see in every item we have only title (item name), pubDate (date of pub-
lication), description and link (item URI). Description includes some additional
information like price or auction deadline date, but to read them other actions are

http://allegro.pl/rss.php/search?string=C%23&category=90328&price_from=1
2&price_to=200&description=1&selected_country=1&search_type=1&postcode_e
nabled=1

<item> <title>C# SPECYFIKACJA J�ZYKA - NOWA</title>
<guid isPermaLink="false">http://allegro.pl/c-specyfikacja-jezyka-nowa-
i7022874587.html</guid>
<link>http://allegro.pl/c-specyfikacja-jezyka-nowa-
i7022874587.html</link>
<pubDate>Sun, 29 Oct 2017 11:05:26 +0100</pubDate>
<description>Sprzedaj�cy: BARCELONAS55
 Cena Kup Teraz: 29,00 zł
 Do ko�ca: 29 dni (wto, 28 lis 2017,
11:05:26)
 <a href="http://allegro.pl/c-specyfikacja-jezyka-nowa-
i7022874587.html">Kup Teraz

 </description></item>

187

needed. This means that we can select only the mentioned four fields contained in
the response.

Implementation of LINQ to Allegro is described in [19] it is influenced by the
example implementations provided by Microsoft [20]. Main LINQ to Allegro clas-
ses are presented in the figure 8. Most important class is AllegroQueryable which
implements IQueryable interface [21]. Additional subclass of Expression was not
created, because functionality of BinaryExpression and LambdaExpression was
enough.

Figure 8. LINQ to Allegro classes

188

Figure 9. AllegroQueryContext class. Source: [2]

Important part of functionality is in AllegroQueryProvider class which im-
plements IQueryProvider interface. AllegroQueryProvider uses AllegroQueryCon-
text class which is responsible for connection with Allegro RSS service (fig.9).
Additionally AllegroQueryContext class has TranslateExpressionTree method uses
ExpressionTreeTranslator class which with method Visit translates parts of expres-
sion and extracts conditions from Where clause. Visit calls VisitEqual method for
every parameter: Title, SearchInDescription, ExcludeWords, Price, CategoryID,
OfferType, SearchType, CollectInPersonaly, PayU. VisitEquals has inside analysis
of conditions for every parameter. More details connected with implementation are
available at [21].

5. Conclusions and future work

Example implementations provided by Microsoft allow programmer to create
his own providers for each data source having its specific query language or even
simple interface. Those examples helped in LINQ to Allegro implementation. Tests
have shown that implementation of the LINQ to Allegro works and queries inte-
grate with C# programming language in .NET environment. On the other hand, the
implementation is quite extensive, it was necessary to “packaging” simple opera-
tion in a fairly extensive class structure. Quite poor Allegro RSS service has caused
that the functionality of LINQ to Allegro is limited. Main part of implementation
was Where clause. The response data are in the XML format and it would be pos-
sible to implement much less complicated solution devoted to search Allegro data.
However such solution would lose a unified query style. In the future work, we
should extend our implementation by improving Where clause and by Select clause
filtering data like price or auction deadline date now included in description.

class AllegroQueryContext
{
 public static object Execute(Expression expression)
 {
 var stringURL =
 new AllegroQueryContext().TranslateExpressionTree(expression);
 XElement _allegroRSS = XElement.Load(stringURL);
 return AllegroHelper.ParseAllegroXml(_allegroRSS);
 }
 private string TranslateExpressionTree(Expression expression)
 {
 return new ExpressionTreeTranslator().Translate(expression);
 }
}

189

REFERENCES

[1] ISO/IEC 9075-1:2016 standard:
https://www.iso.org/committee/45342/x/catalogue/p/1/u/0/w/0/d/0.

[2] Zloof, M., (1975), Query by Example, Conference: American Federation of Infor-
mation Processing Societies: 1975 National Computer Conference proceedings, 19-22
May 1975, Anaheim, CA, USA.

[3] Introduction to queries: https://support.office.com/en-us/article/Introduction-to-
queries-D85E4893-0ED7-4118-8297-785A01357516 (access of 15 November 2017).

[4] XQUERY specification: http://www.w3.org/XML/Query.

[5] XPATH specification: http://www.w3.org/TR/xpath.

[6] SPARQL specification: http://www.w3.org/TR/sparql11-query.

[7] RDF current status: http://www.w3.org/standards/techs/rdf#w3c_all.

[8] RDF 1.1 XML Syntax recommendation: http://www.w3.org/TR/rdf-syntax-grammar.

[9] Cattell R.G.G., Barry D.K. (2000) The Object Data Standard: ODMG 3.0. The Mor-
gan Kaufmann Series in Data Management Systems.

[10] The JSON Query Language; http://www.jsoniq.org (access of 15 November 2017).

[11] Apache TinkerPop. The Gremlin Graph Traversal Machine and Language:
https://tinkerpop.apache.org/gremlin.html (access of 15 November 2017).

[12] Google Custom Search Tutorial: https://developers.google.com/custom-
search/docs/tutorial/introduction (access of 15 November 2017).

[13] Bing Query Language: https://msdn.microsoft.com/en-us/library/ff795667.aspx (ac-
cess of 15 November 2017).

[14] Language Integrated Query: https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/concepts/linq/index (access of 15 November
2017).

[15] Marguerie F., Eichert S., Wooley J. (2008) LINQ in Action, Manning.

[16] Mukherjee S. (2014) Thinking in LINQ: Harnessing the Power of Functional Pro-

gramming in .NET Applications 1st ed. Edition. Apress.

[17] Microsoft Reference Source .NET Framework 4.7.1:
http://referencesource.microsoft.com/#System.Core/System/Linq/IQueryable.cs,eb17c
f64586dbd9b (access of 15 November 2017)

[18] Allegro RSS Channels Generator: http://allegro.pl/rss.php/generatorSearch (access of
15 November 2017)

[19] Maguza J. (2017) LINQ implementation for Allegro system, MSc thesis, Warsaw Uni-
versity of Life Sciences (in Polish).

[20] Walkthrough: Creating an IQueryable LINQ Provider https://msdn.microsoft.com/en-
us/library/bb546158.aspx (access of 15 November 2017).

[21] https://github.com/jakubmaguza (access of 15 November 2017).

