Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove for rank one perturbations that the imaginary part of a coupling resonance point is inversely proportional by a factor of —2 to the rate of change of the scattering phase, as a function of the coupling variable, evaluated at the real part of the resonance point. This equality is analogous to the Breit-Wigner formula from quantum scattering theory. For more general relatively trace class perturbations, we also give a formula for the spectral shift function in terms of coupling resonance points, non-real and real.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
611--621
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Flinders University College of Science and Engineering South Rd, Tonsley, SA 5042 Australia
autor
- Flinders University College of Science and Engineering South Rd, Tonsley, SA 5042 Australia
Bibliografia
- [1] M. Aizenman, S. Warzel, Random Operators: Disorder Effects on Quantum Spectra and Dynamics, Grad. Stud. Math., AMS, 2015.
- [2] M.F. Atiyah, V.K. Patodi, I.M. Singer, Spectral asymmetry and Riemannian geometry I-III, Math. Proc. Camb. Phil. Soc. 77-79 (1975-1976).
- [3] N.A. Azamov, Absolutely continuous and singular spectral shift functions, Dissertationes Math. 480 (2011), 1-102.
- [4] N.A. Azamov, Spectral flow inside essential spectrum, Dissertationes Math. 518 (2016), 1-156.
- [5] N.A. Azamov, Spectral flow and resonance index, Dissertationes Math. 528 (2017), 1-91.
- [6] N.A. Azamov, A.L. Carey, F.A. Sukochev, The spectral shift function and spectral flow, Commun. Math. Phys. 276 (2007) 1, 51-91.
- [7] N.A. Azamov, T.W. Daniels, Singular spectral shift function for resolvent comparable operators, Math. Nachr. (2019), early online publication; https://doi.org/10.1002/mana.201700293
- [8] M.Sh. Birman, M.G. Krem, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR 144 (1962), 475-478 [in Russian].
- [9] M.Sh. Birman, M.Z. Solomyak, Remarks on the spectral shift function, J. Soviet Math. 3 (1975) 4, 408-419.
- [10] M.Sh. Birman, D.R. Yafaev, The spectral shift function. The work of M. G. Krein and its further development, St. Petersburg Math. J. 4 (1993) 5, 833-870.
- [11] A. Bohm, Quantum Mechanics: Foundations and Applications, Second Edition, Texts and Monographs in Physics, Springer, 1986.
- [12] V. Bruneau, V. Petkov, Analytic continuation of the spectral shift function, Duke Math. J. 116 (2003) 3, 389-430.
- [13] S. Dyaltov, M. Zworski, Mathematical theory of scattering resonances, book in preparation; http://math.mit.edu/ dyatlov/res/
- [14] E. Getzler, The odd Chern character in cyclic homology and spectral flow, Topology 32 (1993), 489-507.
- [15] I.C. Gohberg, M.G. Krem, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr., AMS, 1969.
- [16] I. Herbst, J. Rama, Instability of pre-existing resonances under a small constant electric field, Ann. Henri Poincare 16 (2015) 12, 2783-2835.
- [17] A. Jensen, K. Yajima, Instability of resonances under Stark perturbations, Ann. Henri Poincare (2018), to appear.
- [18] M.G. Krem, On the trace formula in perturbation theory, Mat. Sb. 33 (1953), 597-626 [in Russian].
- [19] J. Phillips, Self-adjoint Fredholm operators and spectral flow, Canad. Math. Bull. 39 (1996), 460-467.
- [20] B. Simon, Trace Ideals and Their Applications, 2nd ed., Math. Surveys Monogr., AMS, 2005.
- [21] J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Dover Books on Engineering, Dover, 1972.
- [22] D.R. Yafaev, Mathematical Scattering Theory: General Theory, Trans. Math. Monographs 105, AMS, 1992.
- [23] M. Zworski, Mathematical study of scattering resonances, Bull. Math. Sci. 7 (2017) 1, 1-85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e483523-5bb7-4acf-9128-d714b5699d81