Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work proposes a systematic assessment of stereophotogrammetry and noise-floor tests to characterize and quantify the uncertainty and accuracy of a vision-based tracking system. Two stereophotogrammetry sets with different configurations, i.e., some images are designed and their sensitivity is quantified based on several assessments. The first assessment evaluates the image coordinates, stereo angle and reconstruction errors resulting from the stereophotogrammetry procedure, and the second assessment expresses the uncertainty from the variance and bias errors measured from the noise-floor test. These two assessments quantify the uncertainty, while the accuracy of the vision-based tracking system is assessed from three quasi-static tests on a small-scaled specimen. The difference in each stereophotogrammetry set and configuration, as indicated by the stereophotogrammetry and noise-floor assessment, leads to a significant result hat the first stereophotogrammetry set measures the RMSE of 3.6 mm while the second set identifies only 1.6 mm of RMSE. The results of this work recommend a careful and systematic assessment of stereophotogrammetry and noise-floor test results to quantify the uncertainty before the real test to achieve a high displacement accuracy of the vision-based tracking system.
Czasopismo
Rocznik
Tom
Strony
75--92
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wzory
Twórcy
autor
- University of Nevada, Department of Civil & Environmental Engineering, Reno, NV 89557, USA
- Research Center for Biomaterials, National Research and Innovation Agency, Cibinong Science Center, Jl. Raya Bogor km 46, Cibinong, 16911, Indonesia
autor
- University of Nevada, Department of Civil & Environmental Engineering, Reno, NV 89557, USA
Bibliografia
- [1] Martins, L. L., Rebordão, J. M., & Ribeiro, A. S. (2015). Structural observation of long-span suspension bridges for safety assessment: implementation of an optical displacement measurement system. In Journal of Physics: Conference Series (Vol. 588, No. 1, p. 012004). IOP Publishing, https://doi.org/10.1088/1742-6596/588/1/012004
- [2] Brownjohn, J. M. W., Xu. Y., & Hester, D. (2017). Vision-based bridge deformation monitoring. Frontiers in Built Environment, 3, 23. https://doi.org/10.3389/fbuil.2017.00023
- [3] Poozesh, P., Sabato, A., Sarrafi, A., Niezrecki, C., & Avitabile, P. (2018). A multiple stereo-vision approach using three dimensional digital image correlation for utility-scale wind turbine blades. Proc. IMAC XXXVI, 12.
- [4] Feng. D., & Feng, M. Q. (2017). Experimental validation of cost-effective vision-based structural health monitoring. Mechanical Systems and Signal Processing, 88, 199-211. https://doi.org/10.1016/j.ymssp.2016.11.021
- [5] Xu, Y., Brownjohn. J. & Kong, D. (2018). A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge. Structural Control and Health Monitoring, 25(5), e2155. https://doi.org/10.1002/stc.2155
- [6] Ngeljaratan, L., & Moustafa, M. A. (2020). Structural health monitoring and seismic response assessment of bridge structures using target-tracking digital image correlation. Engineering Structures, 213, 110551.
- [7] Park, H. S., Park, J. S., & Oh, B. K. (2017). Vision-based stress estimation model tor steel frame structures with rigid links. Measurement Science and Technology, 28(7), 075104. https://doi.org/10.1088/1361-6501/aa6f50
- [8] Jones, I., Iadicola, M. H. (Eds.). (2018). A Good Practices Guide for Digital lmage Correlation. International Digital Image Correlation Society (IDICs). https://doi.org/10.32720/idics/gpg.ed1/print.format
- [9] Ngeljaratan, L., Moustafa, M. A., & Pekcan, G. (2021). A compressive sensing method for processing and improving vision-based target-tracking signals for structural health monitoring. Computer-Aided Civil and Infrastructure Engineering. 36(9), 1203-1223. https://doi.org/10.1111/mice.12653
- [10] Ngeljaratan, L., & Moustafa, M. A. (2021). Underexposed Vision-Based Sensors’ Image Enhancement for Feature Identification in Close-Range Photogrammetry and Structural Health Monitoring. Applied Sciences, 11(23), 11086. https://doi.org/10.3390/app112311086
- [11] Ngeljaratan, L., & Moustafa, M. A. (2020). Implementation and evaluation of vision-based sensor image compression for close-range photogrammetry and structural health monitoring. Sensors, 20(23), 6844. https://doi.org/10.3390/s20236844
- [12] Ngeljaratan, L., & Moustafa, M. A. (2019). System identification of large-scale bridges using target-tracking digital image correlation. Frontiers in Built Environment, 5, 85. https://doi.org/10.3389/fbuil.2019.00085
- [13] Olaszek, P. (1999). Investigation of the dynamic characteristic of bridge structures using a computer vision method. Measurement. 25(3), 227-236. https://doi.org/10.1016/S0263-2241(99)00006-8
- [14] Ribeiro, D., Calçada, R., Ferreira, J., & Martins, T. (2014). Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Engineering Structures, 75, 164-180. https://doi.org/10.1016%2Fj.engstruct.2014.04.051
- [15] Zhu, L., Luo, H., & Zhang, X. (2009). Uncertainty and sensitivity analysis for camera calibration. Industrial Robot: An International Journal, 36(3), 238-243. https://doi.org/10.1108/01439910910950496
- [16] Jiang, T., Cui, H., Cheng, X., & Du, K. (2021). Calibration and uncertainty analysis of a combined tracking-based vision measurement system using Monte Carlo simulation. Measurement Science and Technology, 32(9), 095007. https://doi.org/10.1088/136-6501/abed85
- [17] Caja, J., Gómez, F. & Maresca, P. (2015). Optical measuring equipments. Part I: Calibration model and uncertainty estimation. Precision Engineering, 40, 298-304. https://doi.org/10.1016/j.precisioneng.2014.10.006
- [18] Sims-Waterhouse, D., Isa, M., Piano, S., & Leach, R. (2020). Uncertainty model for a traceable stereophotogrammetry system. Precision Engineering, 63, 1-9. https://doi.org/10.1016/j.precisioneng.2019.12.008
- [19] Chaochuan, J., Ting, Y., Chuanjiang, W., Binghui, R, & Rugui, H. (2020). An extrinsic calibration method for multiple RGB-D cameras in a limited field of view. Measurement Science and Technology, 31(4), 045901. https://doi.org/10.1088/1361-6501/ab48b3
- [20] Chiodini, S., Pertile, M., Giubilato, R., Salvioli, F., Barrera, M., Franceschetti, P., & Debei, S. (2019). Experimental evaluation of a camera rig extrinsic calibration method based on retro-reflective markers detection. Measurement, 140,47-55. https://doi.org/10.1016/j.measurement.2019.03.036
- [21] Reu, P. L. (2013). A study of the influence of calibration uncertainly on the global uncertainly for digital image correlation using a Monte Carlo approach. Experimental Mechanics, 53(9), 1661-1680. https://doi.org/10.1007/s11340-013-9746-1
- [22] Xia, R., Hu, M., Zhao, J., Chen, S., & Chen, Y. (2018). Global calibration of multi-cameras with non-overlapping fields of view based on photogrammetry and reconfigurabie target. Measurement Science and Technology, 29(6), 065005. https://doi.org/10.1088/1361-6501/aab028
- [23] Wieneke, B. (2018). Improvements for volume self-calibration. Measurement Science and Technology, 29(8), 084002. https://doi.org/10.1088/1361-6501/aacd45
- [24] Discetti, S., & Astarita, T. (2014). The detrimental effect of increasing the number of cameras on self-calibration for tomographic PIV. Measurement Science and Technology, 25(8), 084001. https://doi.org/10.1088/0957-0233/25/8/084001
- [25] Lavatelli, A., & Zappa, E. (2016). Modeling uncertainty for a vision system applied to vibration measurements. IEEE Transactions on Instrumentation and Measurement, 65(8), 1818-1826. https://doi.org/10.1109/TIM.2016.2541359
- [26] Gu, F., Zhao, H. Ma, Y., & Bu, P. (2015). Camera calibration based on the back projection process. Measurement Science and Technology, 26(12), 125004. https://doi.org/10.1088/0957-0233/26/12/125004
- [27] Rodríguez-Quiñonez, J. C., Sergiyenko, O., Flores-Fuentes, W., Rivas-Lopez, M., Hernandez-Balbuena, D., Rascón, R., & Mercorelli, P. (2017). Improve a 3D distance measurement accuracy in stereo vision systems using optimization methods’ approach. Opto-Electronics Review, 25(1), 24-32. https://doi.org/10.1016/j.opelre.2017.03.001
- [28] Cai, X., Zhong, K., Fu, Y., Chen, J., Liu, Y., & Huang, C. (2020). Calibration method for the rotating axis in panoramic 3D shape measurement based on a turntable. Measurement Science and Technology, 32(3), 035004. https://doi.org/10.1088/1361-6501/abcb7e
- [29] Niu, Z., Liu, K., Wang, Y., Huang, S., Deng, X., & Zhang, Z. (2017). Calibration method for the relative orientation between the rotation axis and a camera using constrained global optimization. Measurement Science and Technology, 28(5), 055001. https://doi.org/10.1088/1361-6501/aa5fd4
- [30] Liu, H., Zhou, X., Liu, Q., Ma, M., He, X., & Lin, J. (2021). Modeling, measurement, and calibration of three-axis integrated aerial camera pointing errors. Measurement Science and Technology, 32(1), 075206. https://doi.org/10.1088/1361-6501/abdef5
- [31] Xu, Y., Brownjohn, J. M., & Huseynov, F. (2019). Accurate deformation monitoring on bridge structures using a cost-effective sensing system combined with a camera and accelerometers: Case study. Journal of Bridge Engineering, 24(1), 05018014. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001330
- [32] Zhang, Z., (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. https://doi.org/10.1109/34.888718
- [33] Luo, P. F., Chao, Y. J., Sutton, M. A., & Peters, W. H. (1993). Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Experimental Mechanics, 33(2), 123-132. https://doi.org/10.1007/BF02322488
- [34] Zhu, C., Yu, S., Liu, C., Jiang, P., Shao, X., & He, X. (2019). Error estimation of 3D reconstruction in 3D digital image correlation. Measurement Science and Technology, 30(2), 025204. https://doi.org/10.1088/1361-6501/aafR46
- [35] Sutton, M. A., Yan, J. H., Tiwari, V., Schreier, H. W., & Orteu, J. J. (2008). The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Optics and Lasers in Engineering, 46(10), 746-757. https://doi.org/10.1016/j.optlaseng.2008.05.005
- [36] Schmidt, T., Tyson, J., & Galanulis, K. (2003). Full-field dynamic displacement and strain measurement-Specific examples using advanced 3D image correlation photogrammetry: Part II. Experimental Techniques, 27(4), 22-26. https://doi.org/10.1111/j.1747-1567.2003.tb00118.x
- [37] Schmidt, T., Tyson, J., & Galanulis, K. (2003). Full-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry: Part I. Experimental Techniques, 27(3), 47-50. https://doi.org/10.1111/j.1747-1567.2003.tb00115.x
Uwagi
1. The authors would like to thank the Los Alamos National Laboratory for providing funding for the vison-based system upgrade and validation tests in this study. We like to thank Sherif Elfass Ph.D. for valuable insight on the validation tests, and Tim Schmidt of Trilion Quantity Systems, USA for the technical support on various aspects of the system hardware and software.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e45d658-f00c-493d-b490-7e7fae5af529