PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling dynamics of transmission conductors with Cosserat rod

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We proposed a method to analyze the galloping, a vibration by wind force, of transmission conductors. The Cosserat rod model was introduced to describe the motion of the conductor line. The deformation was tracked using the intrinsic framework of material coordinates which are able to handle the large motion in galloping phenomena. The Cosserat model provided a theory framework to simulate the non-linear coupling of the torsional motion and the translational motion. Such non-linear coupling was reported as one of the main causes for the galloping phenomena.
Rocznik
Strony
73--79
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
  • College of Civil Engineering, Chongqing University Chongqing, China
  • Key Laboratory of New Technology for Construction of Cities in Mountain Area Chongqing, China
autor
  • College of Civil Engineering, Chongqing University Chongqing, China
  • Key Laboratory of New Technology for Construction of Cities in Mountain Area Chongqing, China
autor
  • National Centre for Computer Animation, The Media School, Bournemouth University Poole, UK
autor
  • National Centre for Computer Animation, The Media School, Bournemouth University Poole, UK
autor
  • National Centre for Computer Animation, The Media School, Bournemouth University Poole, UK
autor
  • College of Information Engineering, Northwest Agriculture & Forestry University Yangling, Shaanxi, 712100, China
Bibliografia
  • [1] O. Chabart, J.L. Lilien. Galloping of electrical lines in wind tunnel facilities. J. Wind Eng. Ind. Aerodyn., 74–76, 967–976. DOI: 10.1016/S0167-6105(98)00088-9, 1998.
  • [2] J.P. Den Hartog. Transmission line vibration due to sleet, Trans. A.I.E.E., 51 (4): 1074-1076. 1932.
  • [3] O. Nigol, G.J. Clarke. Conductor galloping and control based on torsional mechanism. IEEE. Power Eng. Soc. Winter Mtg., IEEE C-74016-2, 1974.
  • [4] K.G. McConnel, C.N. Chang. A study of the axial-torsional coupling effect on a sagged transmission line. Exp Mech., 324–329, 1986.
  • [5] A. Luongo, D. Zulli, G. Piccardo. On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct., 87 (15–16): 1003–1014, 2009.
  • [6] O. Nigol, P.G. Buchan. Conductor galloping – part 1, Den H artog mechanism. IEEE. Power Eng. Soc. Summer Mtg. , IEEE F-79714-7, 1979.
  • [7] O. Nigol, P.G. Buchan. Conductor galloping – part 2, torsional mechanism. IEEE. Power Eng. Soc. Summer Mtg., IEEE F-79715-4, 1979.
  • [8] C.B. Rawlins. Transmission Line Reference Book: Wind-Induced Conductor Motion . Electrical Power Research Institute. Palo Alto, California, U.S.A. 1979.
  • [9] P. McComber, A. Paradis. A cable galloping model for thin ice accretions. Atmos. Res., 46 (1–2): 13–25, DOI: 10.1016/S0169-8095(97)00047-1, 1998.
  • [10] D. Burton, D.Q. Cao, R.W. Tucker, C. Wang. On the stability of stay cables under light wind and rain conditions. J. Sound Vib., 279 (1–2): 89–117, DOI: 10.1016/j.jsv.2003.10.038, 2005.
  • [11] Y.M. Desai, P. Yu, N. Popplewell, A.H. Shah. Finite element modelling of transmission line galloping. Comput. Struct., 57 (3): 407–420, DOI: 10.1016/0045-7949(94)00630-L, 1995.
  • [12] Q. Zhang, N. Popplewell, A.H. Shah. Galloping of bundle conductor. J. Sound Vib., 234 (1): 115–134, DOI: 10.1006/jsvi.1999.2858, 2000.
  • [13] X. Liu, B. Yan, H. Zhang, S. Zhou. Nonlinear numerical simulation method for galloping of iced conductor. Appl. Math. Mech. – Engl. Ed., 30 (4): 489–501, 2009.
  • [14] S. Antman. Applied Mathematical Sciences, 107 – Nonlinear Problems of Elasticity. Springer Verlag, 1995.
  • [15] F. Bertails, B. Audoly, M. Cani, B. Querleux, F. Leroy, J. Leveque. Super-helices for predicting the dynamics of natural hair. SIGGRAPH’06, 1180–1187, 2006.
  • [16] J. Chang, J. Pan, J.J. Zhang. Modelling rod-like flexible biological tissues for medical training. LNCS 5903, 51–61, 2009.
  • [17] D. Pai. Strands: interactive simulation of thin solids using Cosserat models. Comput. Graph. Forum, 21 (3): 347–352, 2002
  • [18] J. Chang, D.X. Shepherd, J.J. Zhang. Cosserat-beam-based dynamic response modelling. Comput. Animat. Virtual Worlds, 18 (4–5): 429–436, DOI: 10.1002/cav.v18:4/5, 2007.
  • [19] Z. Xiao, Z. Yan, Z. Li, Z. Wang, H. Huang. Wind tunnel and a erodynamic characteristics tests for ice-covering of transmission line adopting 8-bundled conductor. Power Sys. Tech., 33 (5): 90–94, 2009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e45347b-4ff1-41f4-93af-b9f36b01affa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.