PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bedform characteristics in natural and regulated channels: A comparative field study on the Wilga River, Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of a field investigation conducted to examine the bed sediment, riverbed morphology and flow structure over dunes in natural and regulated channels. Field measurements using an acoustic Doppler current profiler (ADCP) have been carried out on two parts of lowland Wilga River in Poland. It is shown that the bedforms with a low angle of lee side develop more frequently than asymmetrical dunes with high lee-side angles, which are mostly associated with the occurrence of local scours and river meanders. Wavenumber analysis of bed elevation confirms the existence of scaling region in the longitudinal wavenumber spectrum, with “–3” scaling exponents for the natural and regulated channels as well. Moreover, the results of flow velocity field are presented in the form of a 2-D streamwise-vertical vector field, showing several similarities to previous laboratory and field investigations conducted on much deeper rivers than the Wilga. The experimental campaign and methods used to obtain the results are also presented briefly. In addition, a short database of fluvial dunes statistics is provided.
Czasopismo
Rocznik
Strony
1413--1434
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Aberle, J., V. Nikora, M. Henning, B. Ettmer, and B. Hentschel (2010), Statistical characterization of bed roughness due to bed forms: A field study in the Elbe River at Aken, Germany, Water Resour. Res. 46,3, W03521, DOI: 10.1029/2008WR007406.
  • [2] Aberle, J., S.E. Coleman, and V.I. Nikora (2012), Bed load transport by bed form migration, Acta Geophys. 60,6, 1720–1743, DOI: 10.2478/s11600-012-0076-y. http://dx.doi.org/10.2478/s11600-012-0076-y
  • [3] Annambhotla, V.S.S., W.W. Sayre, and R.H. Livesey (1972), Statistical properties of Missouri River bed forms, J. Waterw. Harbors Coastal Eng. Div. 98,4, 489–510.
  • [4] ASCE Task Committee on Flow and Transport over Dunes (2002), Flow and transport over dunes, J. Hydraul. Eng. 128,8, 726–728, DOI: 10.1061/(ASCE) 0733-9429(2002)128:8(726). http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:8(726)
  • [5] Ashley, G.M. (1990), Classification of large-scale subaqueous bedforms: a new look at an old problem — SEPM bedforms and bedding structures, J. Sediment. Petrol. 60,1, 160–172, DOI: 10.2110/jsr.60.160. http://dx.doi.org/10.2110/jsr.60.160
  • [6] Best, J. (2005), The fluid dynamics of river dunes: A review and some future research directions, J. Geophys. Res. 110, F4, F04S02, DOI: 10.1029/2004JF000218.
  • [7] Best, J., and R. Kostaschuk (2002), An experimental study of turbulent flow over a low-angle dune, J. Geophys. Res. 107, C9, 18-1–18-19, DOI: 10.1029/2000JC000294.
  • [8] Bialik, R.J. (2013), Numerical study of near-bed turbulence structures influence on the initiation of saltating grains movement, J. Hydrol. Hydromech. 61,3, 202–207, DOI: 10.2478/johh-2013-0026. http://dx.doi.org/10.2478/johh-2013-0026
  • [9] Bose, S.K., and S. Dey (2009), Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves, Phys. Rev. E 80,3, 036304, DOI: 10.1103/PhysRevE.80.036304. http://dx.doi.org/10.1103/PhysRevE.80.036304
  • [10] Bradley, R.W., J.G. Venditti, R.A. Kostaschuk, M. Church, M. Hendershot, and M.A. Allison (2013), Flow and sediment suspension events over low-angle dunes: Fraser Estuary, Canada, J. Geophys. Res. 118,3, 1693–1709, DOI: 10.1002/jgrf.20118. http://dx.doi.org/10.1002/jgrf.20118
  • [11] Carling, P.A., E. Gölz, H.G. Orr, and A. Radecki-Pawlik (2000a), The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology, Sedimentology 47,1, 227–252, DOI: 10.1046/j.1365-3091.2000.00290.x. http://dx.doi.org/10.1046/j.1365-3091.2000.00290.x
  • [12] Carling, P.A., J.J. Williams, E. Gölz, and A.D. Kelsey (2000b), The morphodynamics of fluvial sand dunes in the River Rhine near Mainz, Germany. II. Hydrodynamics and sediment transport, Sedimentology 47,1, 253–278, DOI: 10.1046/j.1365-3091.2000.00291.x. http://dx.doi.org/10.1046/j.1365-3091.2000.00291.x
  • [13] Carling, P.A., A. Radecki-Pawlik, J.J. Williams, B. Rumble, L. Meshkova, P. Bell, and R. Breakspear (2006a), The morphodynamics and internal structure of intertidal fine-gravel dunes: Hills Flats, Severn Estuary, UK, Sediment. Geol. 183,3–4, 159–179, DOI: 10.1016/j.sedgeo.2005.07.007. http://dx.doi.org/10.1016/j.sedgeo.2005.07.007
  • [14] Carling, P.A., L. Whitcombe, I.A. Benson, B.G. Hankin, and A.M. Radecki-Pawlik (2006b), A new method to determine interstitial flow patterns in flume studies of sub-aqueous gravel bedforms such as fish nests, River Res. Applic. 22,6, 691–701, DOI: 10.1002/rra.930. http://dx.doi.org/10.1002/rra.930
  • [15] Chang, K., and G. Constantinescu (2013), Coherent structures in flow over two-dimensional dunes, Water Resour. Res. 49,5, 2446–2460, DOI: 10.1002/wrcr.20239. http://dx.doi.org/10.1002/wrcr.20239
  • [16] Chanson, H. (2008), Acoustic Doppler velocimetry (ADV) in the field and in laboratory: practical experiences. In: F. Larrarte and H. Chanson (eds.), Proc. Int. Meeting on Measurements and Hydraulics of Sewers “Experiences and Challenges in Sewers: Measurements and Hydrodynamics”, 19–21 August 2008, Bouguenais, France, 49–66.
  • [17] Chen, J., Z. Wang, M. Li, T. Wei, and Z. Chen (2012), Bedform characteristics during falling flood stage and morphodynamic interpretation of the middlelower Changjiang (Yangtze) River channel, China, Geomorphology 147–148, 18–26, DOI: 10.1016/j.geomorph.2011.06.042. http://dx.doi.org/10.1016/j.geomorph.2011.06.042
  • [18] Coleman, S.E. (2010), Fluvial sediment transport and morphology: views from upstream and midstream. In: A. Dittrich, K. Koll, J. Aberle, and P. Geisenhainer (eds.), Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2010”, 8–10 September 2010, Braunschweig, Germany, 11–21.
  • [19] Coleman, S.E. (2011), Experimental investigations of sandy riverbed morphology. In: P. Rowiński (ed.), Experimental Methods in Hydraulic Research, Geo-Planet: Earth and Planetary Sciences, Springer-Verlag, Berlin-Heidelberg, 1–27, DOI: 10.1007/978-3-642-17475-9_1. http://dx.doi.org/10.1007/978-3-642-17475-9_1
  • [20] Coleman, S.E., and B.W. Melville (1994), Bed-form development, J. Hydraul. Eng. 120,5, 544–560, DOI: 10.1061/(ASCE)0733-9429(1994)120:5(544). http://dx.doi.org/10.1061/(ASCE)0733-9429(1994)120:5(544)
  • [21] Coleman, S.E., and V.I. Nikora (2011), Fluvial dunes: initiation, characterization, flow structure, Earth Surf. Process. Land. 36,1, 39–57, DOI: 10.1002/esp.2096. http://dx.doi.org/10.1002/esp.2096
  • [22] Flemming, B.W. (1988), On the classification of underwater, flow-transverse transport body, Boch. Geol. Geotechn. Arb. 29, 44–47 (in German).
  • [23] Gabel, S.L. (1993), Geometry and kinematics of dunes during steady and unsteady flows in the Calamus River, Nebraska, USA, Sedimentology 40,2, 237–269, DOI: 10.1111/j.1365-3091.1993.tb01763.x. http://dx.doi.org/10.1111/j.1365-3091.1993.tb01763.x
  • [24] Grinvald, D.I., and V.I. Nikora (1988), River Turbulence, Hydrometeoizdat, Leningrad, 152 pp. (in Russian).
  • [25] Hino, M. (1968), Equilibrium-range spectra of sand waves formed by flowing water, J. Fluid Mech. 34,3, 565–573, DOI: 10.1017/S0022112068002089. http://dx.doi.org/10.1017/S0022112068002089
  • [26] Jain, S.C., and J.F. Kennedy (1974), The spectral evolution of sedimentary bed forms, J. Fluid Mech. 63,2, 301–314, DOI: 10.1017/S0022112074001157. http://dx.doi.org/10.1017/S0022112074001157
  • [27] Karpiński, M., R.J. Bialik, and P.M. Rowiński (2013), Application of Lattice Boltzmann Method for generation of flow velocity field over river bed-forms. In: P. Rowiński (ed.), Experimental and Computational Solutions of Hydraulic Problems, GeoPlanet: Earth and Planetary Sciences, Springer-Verlag, Berlin-Heidelberg, 327–335, DOI: 10.1007/978-3-642-30209-1_23. http://dx.doi.org/10.1007/978-3-642-30209-1_23
  • [28] Kostaschuk, R., J. Best, P. Villard, J. Peakall, and M. Franklin (2005), Measuring flow velocity and sediment transport with an acoustic Doppler current profiler, Geomorphology 68,1–2, 25–37, DOI: 10.1016/j.geomorph.2004.07.012. http://dx.doi.org/10.1016/j.geomorph.2004.07.012
  • [29] Moll, J.R., T. Schilperoort, and A.J. De Leeuw (1987), Stochastic analysis of bedform dimensions, J. Hydraul. Res. 25,4, 465–479, DOI: 10.1080/00221688709499263. http://dx.doi.org/10.1080/00221688709499263
  • [30] Nelson, J.M., R.L. Shreve, S.R. McLean, and T.G. Drake (1995), Role of near-bed turbulence structure in bed load transport and form mechanics, Water Resour. Res. 31,8, 2071–2086, DOI: 10.1029/95WR00976. http://dx.doi.org/10.1029/95WR00976
  • [31] Nikora, V.I. (1983), Sand wave spectra in a translational flow, Met. Hydrol. 5, 92–102 (in Russian).
  • [32] Nikora, V.I. (1987), Methods for quantitative description of channel bed-forms, In: Erosional and Channel Processes in Various Climatic Conditions, Moscow University, Moscow, 327–328 (in Russian).
  • [33] Nikora, V.I., A. Sukhodolov, G. Shalar, and P.M. Rowiński (1995), Field measurements of sand wave spectra in river. In: Proc. 8th Int. Conf. on Transport and Sedimentation of Solid Particles, 24–26 January 1995, Prague, Czech Republic, B7-1–B7-6.
  • [34] Nikora, V.I., A.N. Sukhodolov, and P.M. Rowiński (1997), Statistical sand wave dynamics in one-directional water flows, J. Fluid. Mech. 351, 17–39, DOI: 10.1017/S0022112097006708. http://dx.doi.org/10.1017/S0022112097006708
  • [35] Omidyeganeh, M., and U. Piomelli (2013), Large-eddy simulation of threedimensional dunes in a steady, unidirectional flow. Part 2. Flow structures, J. Fluid. Mech. 734, 509–534, DOI: 10.1017/jfm.2013.499. http://dx.doi.org/10.1017/jfm.2013.499
  • [36] Parsons, D.R., J.L. Best, O. Orfeo, R.J. Hardy, R. Kostaschuk, and S.N. Lane (2005), Morphology and flow fields of three-dimensional dunes, Río Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling, J. Geophys. Res. 110,F4, F04S03, DOI: 10.1029/2004JF000231.
  • [37] Parsons, D.R., P.R. Jackson, J.A. Czuba, F.L. Engel, B.L. Rhoads, K.A. Oberg, J.L. Best, D.S. Mueller, K.K. Johnson, and J.D. Riley (2013), Velocity Mapping Toolbox (VMT): a processing and visualization suite for movingvessel ADCP measurements, Earth Surf. Process. Land. 38,11, 1244–1260, DOI: 10.1002/esp.3367. http://dx.doi.org/10.1002/esp.3367
  • [38] Petrie, J., P. Diplas, M. Gutierrez, and S. Nam (2013), Combining fixed- and moving-vessel acoustic Doppler current profiler measurements for improved characterization of the mean flow in a natural river, Water Resour. Res. 49,9, 5600–5614, DOI: 10.1002/wrcr.20396. http://dx.doi.org/10.1002/wrcr.20396
  • [39] Qin, J., D. Zhong, and G. Wang (2013), Characterizing sand ripples at equilibrium phases, J. Hydrol. Hydromech. 61,4, 293–298, DOI: 10.2478/johh-2013-0037. http://dx.doi.org/10.2478/johh-2013-0037
  • [40] Radecki-Pawlik, A., P. Carling, and L. Książek (2010). Sand-gravel subaquatic bed forms system in the Raba River — the morphology and granulometrics. In: Proc. 12th River Morphological Colloquium “Fluvial Systems in Space and Time”, Bundesanstalt für Gewässerkunde BfG, Koblenz, Germany, 47–58.
  • [41] Ramirez, M.T., and M.A. Allison (2013), Suspension of bed material over sand bars in the Lower Mississippi River and its implications for Mississippi delta environmental restoration, J. Geophys. Res. 118,2, 1085–1104, DOI: 10.1002/jgrf.20075. http://dx.doi.org/10.1002/jgrf.20075
  • [42] Shugar, D.H., R. Kostaschuk, J.L. Best, D.R. Parsons, S.N. Lane, O. Orfeo, and R.J. Hardy (2010), On the relationship between flow and suspended sediment transport over the crest of a sand dune, Río Paraná, Argentina, Sedimentology 57,1, 252–272, DOI: 10.1111/j.1365-3091.2009.01110.x. http://dx.doi.org/10.1111/j.1365-3091.2009.01110.x
  • [43] Simons, D.B., E.V. Richardson, and C.F. Nordin Jr. (1960), Sedimentary structures generated by flow in alluvial channels. In: Special Publications of SEPM, The Society of Economic Paleontologists and Mineralogists, Primary Sedimentary Structures (SP12), 34–52.
  • [44] Stoesser, T., C. Braun, M. García-Villalba, and W. Rodi (2008), Turbulence structures in flow over two-dimensional dunes, J. Hydraul. Eng. 134,1, 42–55, DOI: 10.1061/(ASCE)0733-9428(2008)134:1(42). http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:1(42)
  • [45] Sukhodolov, A.N., J.J. Fedele, and B.L. Rhoads (2004), Turbulent flow over mobile and molded bedforms: a comparative field study. In: M. Greco, A. Carravetta, and R. Della Morte (eds.), Proc. 2nd Int. Conf. on Fluvial Hydraulics “River Flow 2004”, 23–25 June 2004, Napoli, Italy, 317–325.
  • [46] Sukhodolov, A.N., J.J. Fedele, and B.L. Rhoads (2006), Structure of flow over alluvial bedforms: an experiment on linking field and laboratory methods, Earth Surf. Process. Land. 31,10, 1292–1310, DOI: 10.1002/esp.1330. http://dx.doi.org/10.1002/esp.1330
  • [47] Szkutnicki, J. (1996), An Experimental Estimation of the Roughness of a River’s Beds, Materiały Badawcze, Ser. Hydrologia i Oceanologia, Vol. 19, IMiGW, Warszawa, 51 pp. (in Polish).
  • [48] Tsubaki, R., Y. Kawahara, Y. Muto, and I. Fujita (2012), New 3-D flow interpolation method on moving ADCP data, Water Resour. Res. 48,5, W05539, DOI: 10.1029/2011WR010867.
  • [49] Tuijnder, A.P., J.S. Ribberink, and S.J.M.H. Hulscher (2009), An experimental study into the geometry of supply-limited dunes, Sedimentology 56,6, 1713–1727, DOI: 10.1111/j.1365-3091.2009.01054.x. http://dx.doi.org/10.1111/j.1365-3091.2009.01054.x
  • [50] Vanoni, V.A., and L.S. Hwang (1967), Relation between bed forms and friction in streams, J. Hydraul. Div. ASCE 93,3, HY3, 121–144.
  • [51] Xie, Z.H., B.L. Lin, R.A. Falconer, and T.B. Maddux (2013), Large-eddy simulation of turbulent open-channel flow over three-dimensional dunes, J. Hydraul. Res. 51,5, 494–505, DOI: 10.1080/00221686.2013.835287. http://dx.doi.org/10.1080/00221686.2013.835287
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e444804-5929-4015-bd22-e4de2c27e758
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.