PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hardware implementation of MBFSK modulation technique for underwater wireless communications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The underwater communication technique based on MBFSK (Multiple Binary Frequency Shift Keying) modulation is used in challenging propagation conditions. Despite the band-width limitations present underwater, it provides stable underwa-ter connectivity. This paper presents a hardware implementation of the MBFSK modulation technique for underwater wireless communications. The implementation was carried out using an FPGA-based programmable logic device. The concept of the device design, the hardware solution, and the firmware descrip-tion are presented. An overview and diagram of the underwater communication system are also provided. The transceiver system was tested in the tank of the Hydroacoustics Laboratory of the Gdynia Maritime University, and the results are presented and discussed. The aim of this work is to present the design, software algorithm, and test results of the developed underwater communication system.
Twórcy
  • Gdynia Maritime University, Gdynia, Poland
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • [1] R. Stewart, Introduction to Physical Oceanography. University Press of Florida, 2009.
  • [2] N. U. R. Junejo, M. Sattar, S. Adnan, H. Sun, A. B. M. Adam, A. Hassan, and H. Esmaiel, “A Survey on Physical Layer Techniques and Challenges in Underwater Communication Systems,” Journal of Marine Science and Engineering, vol. 11, no. 4, 2023. [Online]. Available: https://www.mdpi.com/2077-1312/11/4/885
  • [3] M. Stojanovic, “Low Complexity OFDM Detector for Underwater Acoustic Channels,” in OCEANS 2006, 2006, pp. 1-6.
  • [4] N. U. R. Junejo, H. Esmaiel, M. Sattar, H. Sun, M. A. Khalil, and I. Ullah, “Sea Experimental for Compressive Sensing-Based Sparse Channel Estimation of Underwater Acoustic TDS-OFDM System,” Wireless Communications and Mobile Computing, vol. 2022, no. 1, p. 2523196, 2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/2523196
  • [5] M. Murad, I. A. Tasadduq, and P. Otero, “Ciphered BCH Codes for PAPR Reduction in the OFDM in Underwater Acoustic Channels,” Journal of Marine Science and Engineering, vol. 10, no. 1, 2022. [Online]. Available: https://www.mdpi.com/2077-1312/10/1/91
  • [6] Z. Tang, S. Tu, W. Huang, and Y. Zhang, “Design and implementation study of FPGA-based underwater acoustic MFSK-OFDM communication algorithm,” in International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024), R. B. Pachori and L. Chen, Eds., vol. 13180, International Society for Optics and Photonics. SPIE, 2024, p. 131803S. [Online]. Available: https://doi.org/10.1117/12.3033604
  • [7] C. T. Tan GAO, Chengcai LYU, “Error control method for OFDM-MFSK underwater acoustic communication,” Systems Engineering and Electronics, vol. 44, no. 5, p. 1701, 2022. [Online]. Available: https://www.sys-ele.com/EN/abstract/article 8667.shtml
  • [8] A. Czapiewska, A. Luksza, R. Studański, L. Wojewódka, and A. Zak, “Evaluation of Selected Modulation Techniques in Underwater Multi-path Channel,” IEEE Access, vol. PP, pp. 1-1, 01 2025.
  • [9] J. H. Schmidt, A. M. Schmidt, I. Kochańska, R. Studański, and A. Żak, “Performance of underwater data transmission using incoherent modulation MFSK in very shallow waters,” Int. J. Electron. Commun. Telecommun., vol. 70, pp. 861869, 2024.
  • [10] A. Czapiewska, A. Łuksza, R. Studański, L. Wojewódka, and A. Żak, “Comparison of Doppler Effect Estimation Methods for MFSK Trans-mission in Multipath Hydroacoustic Channel,” IEEE Access, vol. 12, pp. 49 976-49 986, 2024.
  • [11] U. M. Qureshi, F. K. Shaikh, Z. Aziz, S. M. Z. S. Shah, A. A. Sheikh, E. Felemban, and S. B. Qaisar, “RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments,” Sensors, vol. 16, no. 6, 2016. [Online]. Available: https://www.mdpi.com/1424-8220/16/6/890
  • [12] A. Czapiewska, A. Łuksza, R. Studański, L. Wojewódka, and A. Żak, “Evaluating the Effectiveness of Doppler Frequency Shift Determination using Pilots in Broadband Transmission,” Int. J. Electron. Commun. Telecommun., vol. 70, pp. 797-803, 2024.
  • [13] M. Hasan, M. Hossain, M. Islam, and R. Mondol, “Comparative study of different guard time intervals to improve the ber performance of wimax systems to minimize the effects of isi and ici under adaptive modulation techniques over sui-1 and awgn communication channels,” International Journal of Computer Science and Information Security, vol. 6, 11 2009.
  • [14] H. Van Trees, K. Bell, and Z. Tian, Detection Estimation and Modu-lation Theory, Part I: Detection, Estimation, and Filtering Theory, ser. Detection Estimation and Modulation Theory. Wiley, 2013.
  • [15] J. Mizeraczyk, R. Studanski, A. Zak, and A. Czapiewska, “A Method for Underwater Wireless Data Transmission in a Hydroacoustic Channel under NLOS Conditions,” Sensors, vol. 21, no. 23, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/23/7825
Uwagi
This work was supported by the National Centre for Research and Development under Project DOB-SZAFIR/01/B/017/04/2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e407764-e780-4e82-9f7c-9d0db7119b65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.