PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

NFC technology for precise localization in areas with limited global navigation satellite system signal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The emergence of modern technologies and widespread access to the Internet has led to an increase in interest in mapping websites. The data provided by online mapping geoportals is a rich source of information for society. Today, thanks to these geoportals, the location of objects in the field is widely available. This approach makes it possible to locate objects that are not visible in the field, such as underground electrical cables, underground water lines, or property boundaries. The technology used for object localization is GNSS (Global Navigation Satellite System). GNSS technology is based on the transmission of signals from satellites. However, this technology is limited in areas where satellite signals are restricted, such as high-rise buildings in city centers, dense forests, or tunnels. NFC technology is becoming increasingly available thanks to mobile phones that are equipped with NFC tags. This technology is widely used for payments via a mobile phone. This article presents a method of using the near-field communication (NFC) for easy positioning of infrastructure objects in a given area. This technology is particularly useful in areas with limited GNSS signals, such as urbanized, forested, or mountainous areas.
Rocznik
Tom
Strony
169--180
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • University of Agriculture in Krakow Department of Agricultural Surveying, Cadastre and Photogrammetry 30-198 Kraków, ul. Balicka 253a
autor
  • Faculty of Mining Surveying and Environmental Engineering Department of Geomatics AGH University of Science and Technology in Krakow
Bibliografia
  • Bastos A., Hasegawa H. 2013. Behavior of GPS Signal Interruption Probability under Tree Canopies in Different Forest Conditions. European Journal of Remote Sensing, 46, 613‒622. https://doi.org/10.5721/EuJRS20134636
  • Baumann P., Escriu J. 2019. INSPIRE coverages: an analysis and some suggestions. Open Geospatial Data, softw. stand. 4, 1. https://doi.org/10.1186/s40965-019-0059-x
  • Bernard L., Kanellopoulos I., Annoni A., Smits P. 2005. The European geoportal ‒one step towards the establishment of a European Spatial Data Infrastructure. Computers, Environment and Urban Systems, 29, 1, 15‒31. https://doi.org/10.1016/j.compenvurbsys.2004.05.009
  • Deckert C.J., Bolstad P.V. 1996. Global Positioning System (GPS) accuracies in eastern. S. deciduous and conifer forests. Southern Journal of Applied Forestry, 20(2), 81‒84. https://www.scopus.com/record/display.uri?eid=2-s2.0-0008715662&origin=inward&txGid=edfa44bd3 e1f99fd5bdabc113804111b
  • Directive 2007/2/EC establishing an infrastructure for spatial information in the European Community (INSPIRE). https://inspire.ec.europa.eu/Themes/Data-Specifications/2892
  • Ferrara N.G., Bhuiyan M.Z.H., Söderholm S. et al. 2018. A new implementation of narrowband interference detection, characterization, and mitigation technique for a software-defined multi-GNSS receiver. GPS Solut 22, 106. https://doi.org/10.1007/s10291-018-0769-z
  • http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6165248&isnumber=6237448
  • http://www.gugik.gov.pl/
  • https://nfc-forum.org/
  • https://www.gnssplanning.com/#/skyplot
  • ISO 19115. 2003. Geographical Information – Metadata, International Standards Organisation, Geneva. https://www.iso.org/standard/26020.html
  • Kayhani N., et al. 2022. Tag-based visual-inertial localization of unmanned aerial vehicles in indoor construction environments using an on-manifold extended Kalman filter. Automation in Construction, 135. https://doi.org/10.1016/j.autcon.2021.104112
  • Krzyzek R. 2014. Reliability analysis of the results of RTN GNSS surveys of building structures using indirect methods of measurement. Geodesy and Cartography, 63(2), 161‒181. https://doi.org.10.2478/geocart-2014-0012
  • Langley R.B. 1999. Dilution of Precision. GPS World. http://131.202.94.44/papers.pdf/gpsworld.may99.pdf
  • Lehpamer H. 2012. RFID Design Principles, Artech House, London.
  • McGaughey R.J., Ahmed K., Andersen H.E., Reutebuch S.E. 2017. Effect of Occupation Time on the Horizontal Accuracy of a Mapping-Grade GNSS Receiver under Dense Forest Canopy. Photogramm. Eng. Remote Sens., 83, 861–868. https://dx.doi.org/10.14358/PERS.83.12.861
  • Miaoa M., Jayakarb K. 2016. Mobile payments in Japan, South Korea and China: Cross-border convergence or divergence of business models? Telecommunications Policy, 40, 2–3, March, 182‒196. https://doi.org/10.1016/j.telpol.2015.11.011
  • Perego A. et al. 2012. Harmonization and Interoperability of EU Environmental Information and Services. IEEE Intelligent Systems, 27, 3, 33‒39, May‒June.
  • Pielok J. 2011. Geodezja górnicza. Wydawnictwa AGH, Kraków.
  • Salcic Z., Chan E. 2000. Mobile Station Positioning Using GSM Cellular Phone and Artificial Neural Networks. Wireless Personal Communications, 14, 235–254. https://doi.org/10.1023/A:1008917401129
  • Sánchez-Naranjo S.M. et al. 2017. GNSS Vulnerabilities. In: Multi-Technology Positioning. Eds. J. Nurmi, E.S. Lohan, H. Wymeersch, G. Seco-Granados, O. Nykänen Springer, Cham. https://doi.org/10.1007/978-3-319-50427-8_4
  • Santerre R., Geiger A., Banville S. 2017. Geometry of GPS dilution of precision: revisited. GPS Solut., 21, 1747–1763. https://doi.org/10.1007/s10291-017-0649-y
  • Schofield W., Breach M. 2007. Engineering surveying. Butterworth-Heinemann, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo.
  • Smith D.R. 1985. Digital Transmission Systems. Springer-Verlag US, Springer, Boston, MA, 439‒490. https://doi.org/10.1007/978-1-4757-1185-1
  • Tuček J., Ligoš J. 2002. Forest canopy influence on the precision of location with GPS receivers. Journal of Forest Science, 48, 399–407.
  • Veeckman C., Jedlička K., De Paepe D., Kozhukh D., Kafka Š., Colpaert P., Čerba O. 2017. Geodata interoperability and harmonization in transport: a case study of open transport net. Open Geospatial Data, softw. stand. 2, 3. https://doi.org/10.1186/s40965-017-0015-6
  • Wang L., Groves P.D., Ziebart M.K. 2013. Urban Positioning on a Smartphone: Real-time Shadow Matching Using GNSS and 3D City Models. Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS). https://discovery.ucl.ac.uk/id/eprint/1394970/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e3a33ac-5a26-419b-806a-ffc4623ccdb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.