PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Characterization of the as‑cast microstructure and selected properties of the X‑40 Co‑based superalloy produced via lost‑wax casting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The X-40 Co-based superalloy is often used in the aerospace industry directly in as-cast condition and its analysis in this state is essential to understand further possible phase transformations during service. With this in mind, this work focuses on characterizing the material’s as-cast microstructure, phase transformation temperatures and oxidation resistance. Observations and analyses were performed via thermodynamic simulations, X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), scanning-transmission electron microscopy (STEM-HAADF), energy-dispersive X-ray spectroscopy (EDX), dilatometry (DIL) and differential scanning calorimetry (DSC). The microstructure of the dendritic regions consisted of the α matrix, with MC, M7C3 and M23C6 carbides being present in the interdendritic spaces. Based on DIL, it was found that precipitation of the Cr-rich carbides from the saturated α matrix may occur in the range 650-750 °C. DSC determined the incipient melting and liquidus temperatures of the X-40 superalloy during heating to be 1405 °C and 1421 °C, respectively. Based on oxidation resistance tests carried out at 860 °C, it was found that the mass gain after 500 h exposure was 3 times higher in the air than in steam.
Rocznik
Strony
art. no. e143
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Krakow, Poland
  • Łukasiewicz Research Network-Krakow Institute of Technology, Zakopiańska 73, 30‑418 Krakow, Poland
autor
  • Investment Casting Division, Consolidated Precision Products Corporation, Hetmańska 120, 35‑078 Rzeszow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Krakow, Poland
  • Łukasiewicz Research Network-Krakow Institute of Technology, Zakopiańska 73, 30‑418 Krakow, Poland
autor
  • Łukasiewicz Research Network-Krakow Institute of Technology, Zakopiańska 73, 30‑418 Krakow, Poland
  • Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
  • Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Krakow, Poland
Bibliografia
  • 1. Davies J. ASM specialty handbook. Heat-resistant materials. ASM International: Metals Park; 1997.
  • 2. Klastrom D. Wrought cobalt-base superalloys. J Mater Eng Perform. 1993;2:523-30. https://doi.org/10.1007/BF02661736.
  • 3. Coutsouradis D, Habraken L. Metallurgical applications of cobalt: a critical review. J Met. 1983;35:40-7. https://doi.org/10.1007/BF03338183.
  • 4. Singh K. Advanced materials for land based gas turbines. Trans Indian Inst Met. 2014;67(5):601-15. https://doi.org/10.1007/s12666-014-0398-3.
  • 5. Keyvani M, Garcin T, Fabregue D, Militzer M, Yamanaka K, Chiba A. Continous measurements of recrystallization and grain growth in cobalt super alloys. Metall Mater Trans A. 2017;48:2363-74. https://doi.org/10.1007/s11661-017-4027-8.
  • 6. Rahmani K, Torabian A. Influence of welding on low cycle fatigue properties of Co-based superalloy FSX-414. Trans Nonferrous Met Soc China. 2016;26:1326-35.
  • 7. Sims C. A history of superalloy metallurgy for superalloy metallurgists. In: Proceedings of the fifth international symposium on superalloys sponsored by the high temperature alloys Committee of the Metallurgical Society of AIME. Seven Springs, Pennsylvania, USA. October 7-11, 1984
  • 8. Tomaszewska A, Mikuszewski T, Moskal G, Migas D. Primary microstructure, microsegregation and precipitates characterization of an as-cast new type γ-γ’ Co-Al-Mo-Nb cobalt-based superalloy. J All Comp. 2018;750:741-9. https://doi.org/10.1016/j.jallcom.2018.03.397.
  • 9. Shirpay M, Kazempour-Liacy H. Failure analysis of a repaired gas turbine nozzle. J Fail Anal Prev. 2013;13:243-8. https://doi.org/10.1007/s11668-013-9667-4.
  • 10. Kuzucu V, Ceylan M, Celik H, Aksoy I. Microstructure and phase analyses of stellite 6 plus 6 wt.% Mo alloy. J Mater Proc Technol. 1997;69:257-63. https://doi.org/10.1016/S0924-0136(97)00027-7.
  • 11. Naalchian M, Kasiri-Asgarani M, Shamanian M, Bakhtiari R, Bakhsheshi-Rad H. Comprehensive microstructural investigation during dissimilar transient liquid phase bonding cobalt-based superalloys by BNi-9 amorphous interlayer foil. J Mater Res Technol. 2021;13:2144-60. https://doi.org/10.1016/j.jmrt.2021.05.069.
  • 12. Kuzucu V, Ceylan M, Celik H, Aksoy I. An investigation of stellite-6 alloy containing 5.0 wt% silicon. J Mater Proc Technol. 1998;79:47-51. https://doi.org/10.1016/S0924-0136(97)00452-4.
  • 13. Szala J, Szczotok A, Richter J, Cwajna J, Maciejny A. Selection of methods for etching carbides in MAR-M509 cobalt-base superalloy and acquisition of their images. Mat Charact. 2006;56(4-5):325-35. https://doi.org/10.1016/j.matchar.2005.11.015.
  • 14. Luna Ramirez A, Porcayo-Calderon J, Mazur Z, Salinas-Bravo V, Martinez-Gomez L. Microstructural changes during high temperature service of a cobalt-based superalloy first stage nozzle. Adv Mater Sci Eng. 2016;2016:1745839. https://doi.org/10.1155/2016/1745839.
  • 15. Rakoczy Ł, Rutkowski B, Grudzień-Rakoczy M, Cygan R, Ratuszek W, Zielińska-Lipiec A. Analysis of γ’ precipitates, carbides and nano-borides in heat-treated Ni-based superalloy using SEM, STEM-EDX and HRSTEM. Materals. 2020;13(19):4452. https://doi.org/10.3390/ma13194452.
  • 16. Kuzucu V, Ceylan M, Celik H, Aksoy I. Phase investigation of a cobalt base alloy containing Cr, Ni, W and C. J Mater Proc Technol. 1998;74:137-41. https://doi.org/10.1016/S0924-0136(97)00261-6.
  • 17. Zhao Y, Zhang Y, Zhang Y, Luo Y, Tang D, Liu H, Fu H. Deformation behavior and creep properties oof Co-Al-W-based superalloys: a review. Prog Nat Sci Mater Int. 2021;31:641-8. https://doi.org/10.1016/j.pnsc.2021.09.009.
  • 18. Coutsouradis D, Davin A, Lamberigts M. Cobalt-based superalloys for applications in gas turbines. Mater Sci Eng. 1987;88:11-9. https://doi.org/10.1016/0025-5416(87)90061-9.
  • 19. Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science. 2006;312:90-1. https://doi.org/10.1126/science.1121738.
  • 20. Kamma R, Sakaguchi M, Okazaki M, Shimoda Y, Uchiyama T, Ochiai H, Watanabe M. Fatigue properties of alloy 718 overlay-coated with a Co-based X40 alloy by the micro spark coating. J Sol Mech Mater Eng. 2012;6(3):227-40. https://doi.org/10.1299/jmmp.6.227.
  • 21. Schoonbaert S, Huang X. Brazing and wide gap repair of X-40 using Ni-base alloys. J Eng Gas Turb Power. 2008;130:032101. https://doi.org/10.1115/1.2836743.
  • 22. Ghasemi A, Kolagar A, Pouranvari M. From as-cast to heat treated X-40 superalloy: effect of cooling rate after partial solution treatment on microstructural evolutions and mechanical properties. Mater Sci Eng. 2021;808:40891. https://doi.org/10.1016/j.msea.2021.140891.
  • 23. Lukaszewicz M, Simms N, Dudziak T, Nicholls J. Effect of steam flow rate and sample orientation on steam oxidation of ferritic and austenitic steels at 650 and 700°C. Oxid Met. 2013;79(5-6):473-548. https://doi.org/10.1007/s11085-013-9358-2.
  • 24. Dudziak T, Deodeshmukh V, Backert L, Sobczak N, Witkowska M, Ratuszek W, Chruściel K, Zielinski A, Sobczak J, Bruzda G. Phase investigations under steam oxidation process at 800°C for 1000 h of advanced steels and Ni-based alloys. Oxid Met. 2017;87:139-58. https://doi.org/10.1007/s11085-016-9662-8.
  • 25. Dudziak T, Gajewski P, Śnieżyński B, Deodeshmukh V, Witkowska M, Ratuszek W, Chruściel K. Neural network modelling studies of steam oxidised kinetic behaviour of advanced steels and ni-based alloys at 800°C for 3000 hours. Corr Sci. 2018;133(1):94-111. https://doi.org/10.1016/j.corsci.2018.01.013.
  • 26. Cao K, Yang W, Zhang J, Liu C, Qu P, Su H, Zhang J, Liu L. Solidification characteristics and as-cast microstructure of a Rucontaining nickel-based single crystal superalloy. J Mater Res Technol. 2021;11:474-86. https://doi.org/10.1016/j.jmrt.2021.01.043.
  • 27. Wyckoff R. Crystal structures. New York: Interscience; 1963.
  • 28. McClune F. New X-ray powder diffraction patterns from the JCPDS associateship. Powder Diffract. 1986;1:77-99.
  • 29. Bowman A, Arnold G, Storms E, Nereson N. The crystal structure of Cr23C6. Acta Crystall B. 1972;28:3102-3. https://doi.org/10.1107/S0567740872007526.
  • 30. Sims C, Stoloff N, Hagel W. Superalloys II. New York: Wiley-Interscience; 1987.
  • 31. Matysiak H, Zagorska M, Balkowiec A, Adamczyk-Cieslak B, Dobkowski K, Koralnik M, Cygan R, Nawrocki J, Cwajna J, Kurzydlowski K. The influence of the melt-pouring temperature and inoculant content on the macro and microstructure of the IN713C Ni-based superalloy. JOM. 2016;68(1):185-97. https://doi.org/10.1007/s11837-015-1672-5.
  • 32. Aigner K, Lengauer W, Rafaja D, Ettmayer P. Lattice parameters and thermal expansion of Ti(CxN1-x), Zr(CxN1-x), Hf(CxN1-x) and TiN1-x from 298 to 1473 K as investigated by high-temperature X-ray diffraction. J Alloys Compd. 1994;215:121-6. https://doi.org/10.1016/0925-8388(94)90828-1.
  • 33. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystall. 2011;44:1272-6. https://doi.org/10.1107/S0021889811038970.
  • 34. Guyard C, Barbangelo A, Allibert C, Driole J. Solidification path and phase equilibria in the liquid-solid range of cobalt-base alloy. J Mater Sci. 1981;16:604-12. https://doi.org/10.1007/BF02402776.
  • 35. Hamar-Thibault S, Durrand-Charre M, Andries B. Carbide transformation during aging of wear-resistant cobalt alloys. Metall Mater Trans A. 1982;13:545-50. https://doi.org/10.1007/BF02644417.
  • 36. Johansson T, Uhrenius B. Phase equilibria, isothermal reactions, and a thermodynamic study in the Co-W-C system at 1150°C. Met Sci. 1978;12(2):83-94. https://doi.org/10.1179/msc.1978.12.2.83.
  • 37. Jiang W, Yao X, Guan H, Hu Z. Secondary carbide precipitation in a directionally solidified cobalt-base superalloy. Metall Mater Trans A. 1999;30A:513-20. https://doi.org/10.1007/s11661-999-0043-7.
  • 38. Xie S, Wang T, Lu J, Yang H, Zhao G. Effects of Zr on microstructure and short-term strength in GH586. J Mater Sci Technol. 1999;15(5):415-8.
  • 39. Wallace W, Holt R, Terada T. The nature of the sulfo-carbides observed in nickel-base superalloys. Metallography. 1973;6:511-26. https://doi.org/10.1016/0026-0800(73)90048-7.
  • 40. Kudielka H, Rohde H. Structural investigation of the carbosulfides of titanium and zirconium. Zeitschrift fur Kristallographie (Crystalline Materials). 1960;114:441-56.
  • 41. Lobl K, Tuma G. Carbide precipitation and carbide equilibrium in the Co-Cr-C system. Metal Sci Heat Treat. 1973;15:21-3. https://doi.org/10.1007/BF00648453.
  • 42. Fedoseeva A, Tkachev E, Dudko V, Dudova N, Kaibyshev R. Effect of alloying on interfacial energy of precipitation/matrix in high-chromium martensitic steeels. J Mater Sci. 2017;52:4197-209. https://doi.org/10.1007/s10853-016-0654-5.
  • 43. Skupień P, Radwański K, Gazdowicz J, Arabasz S, Wiedermann J, Szala J. Microstructure of MAR M509 cobalt-based superalloy in as-cast conditions and after heat treatment. PIMŻ. 2010;62(1):259-64 (in polish).
  • 44. Sklenička V, Kvapilova M, Kral P, Dvořak J, Svoboda M, Podhorna B, Zyka J, Hrbaček K, Joch A. Degradation processes in high-temperature creep of cast cobalt-based superalloys. Mater Charact. 2018;144:479-89. https://doi.org/10.1016/j.match ar.2018.08.006.
  • 45. Wagner H, Hall A. The physical metallurgy of cobalt-base superalloys. Defense metals informations center. Columbus: Battelle Memorial Institute; 1962.
  • 46. Cacciamani G, Roncallo G, Wang Y, Vacchieri E, Costa A. Thermodynamic modelling of a six component (C-Co-Cr-Ni-Ta-W) system for the simulation of cobalt based alloys. J Alloys Compd. 2018;730:291-310. https://doi.org/10.1016/j.jallcom.2017.09.327.
  • 47. Gui W, Zhang X, Zhang H, Sun X, Zheng Q. Melting of primary carbides in a cobalt-base superalloy. J Alloys Compd. 2019;787(30):152-7. https://doi.org/10.1016/j.jallcom.2019.02.041.
  • 48. Gui W, Zhang H, Yang M, Jin T, Sun X, Zheng Q. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J Alloys Compd. 2017;695(25):1271-8. https://doi.org/10.1016/j.jallcom.2016.10.256.
  • 49. Gui W, Zhang H, Yang M, Jin T, Sun X, Zheng Q. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd. 2017;728(25):145-51. https://doi.org/10.1016/j.jallcom.2017.08.287.
  • 50. Wielgosz E, Kargul T. Differential scanning calorimetry study of peritectic steel grades. J Therm Anal Calorim. 2015;119:1547-53. https://doi.org/10.1007/s10973-014-4302-5.
  • 51. Archana M, Jagadeeswara Rao C, Ningshen S, Philip J. High-temperature air and steam oxidation and oxide layer characteristics of alloy 617. J Mater Eng Perform. 2021;30:931-43. https://doi.org/10.1007/s11665-020-05367-8.
  • 52. Dooley R. Program on technology innovation: oxide growth and exfoliation on alloys exposed to steam. California: Energy Power Research Institute EPRI; 2007.
  • 53. Buscail H, Rolland R, Riffard F, Issartel C, Perrier S. Cobalt based alloy oxidation at high temperatures. HAL. 2017: 1-10. https://hal.archives-ouvertes.fr/hal-01628 823.
  • 54. Yeh A, Wang S, Cheng C, Chang Y, Chang S. Oxidation behaviour of Si-bearing Co-based alloys. Oxid Met. 2016;86:99-112. https://doi.org/10.1007/s11085-016-9623-2.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e3a247c-ef16-4ba8-b899-72d463122a91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.