PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design with use of 3D printing technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamic development of 3D printing technology contributes to its wide applicability. FDM (Fused Deposition Method) is the most known and popular 3D printing method due to its availability and affordability. It is also usable in design of technical objects – to verify design concepts with use of 3D printed prototypes. The prototypes are produced at lower cost and shorter time comparing to other manufacturing methods and might be used for a number of purposes depending on designed object’s features they reflect. In the article, usability of 3D printing method FDM for designing of technical objects is verified based on sample functional prototypes. Methodology applied to develop these prototypes and their stand tests are covered. General conclusion is that 3D printed prototypes manufactured with FDM method proved to be useful for verifying new concepts within design processes carried out in KOMAG.
Wydawca
Rocznik
Tom
Strony
283--291
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • KOMAG Institute of Mining Technology Pszczyńska 37, 44-101 Gliwice, Poland
  • KOMAG Institute of Mining Technology Pszczyńska 37, 44-101 Gliwice, Poland
  • KOMAG Institute of Mining Technology Pszczyńska 37, 44-101 Gliwice, Poland
  • Universitat Politècnica de Valencia Instituto de Biomecánica de Valencia Camino de Vera s/n, Edificio 9C, 46022 Valencia, Spain
Bibliografia
  • [1] A. Alafaghani, A. Qattawi. “Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method.” Journal of Manufacturing Processes, vol. 36, pp. 164-174, Dec. 2018
  • [2] D. Bałaga, M. Kalita, M. Siegmund. „Use of 3D additive manufacturing technology for rapid prototyping of spraying nozzles”. Mining Machines, vol. 3 pp. 3-13, Sep. 2017.
  • [3] C. Baletti, M. Ballarin, F. Guerra. “3D printing: State of the art and future perspectives.” Journal of Cultural Heritage, vol. 26, pp. 172-182, Mar. 2017
  • [4] C. Buchanan, L. Gardner. “Metal 3D printing in construction: a review of methods research, applications, opportunities and challenges.” Engineering Structures, vol. 180, pp. 332-348, Feb. 2019.
  • [5] J. M. Chacon, M. A. Caminero, E. Garcia-Plaza, P. J. Nunez. “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection.” Materials and Design, vol. 124, pp. 143-157, Jun. 2017.
  • [6] P. Dobrzaniecki, M. Kalita. „Possibility of using the neodymium magnets in machines and equipment clutches”, Mining Machines, vol. 4, pp. 27-38, Dec. 2018.
  • [7] S. Ford, T. Minshall. “Invited review article: Where and how 3D printing is used in teaching and education.” Additive Manufacturing, vol. 25, pp. 131-150, Jan. 2019.
  • [8] A.W. Gebisa, H. G. Lemu. “Influence of 3D Printing FDM Process Parameters on Tensile Property of ULTEM 9085.”, Procedia Manufacturing, vol. 30, pp. 331-338, Jan. 2019.
  • [9] A. Gisario, M. Kazarian, F. Martina, M. Mehrpouya. “Metal additive manufacturing in the commercial aviation industry: A review.” Journal of Manufacturing Systems, vol. 53, pp. 124-149, Oct. 2019.
  • [10] T.W. Kerekes, H. Lim, W. Y. Joe, G. J. Yun. “Characterization of process-deformation/damage property relationship for fused deposition modelling (FDM) 3D-printed specimens.” Additive Manufacturing vol. 25, pp. 532-544, Dec. 2018
  • [11] K.G. Mostafa, C. Montemagno, A.J. Qureshi. “Strength to cost ratio analysis of FDM Nylon 12 3D Printed Parts.” Procedia Manufacturing, vol. 26, pp. 753-762, 2018.
  • [12] T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui. “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges.” Composites Part B: Engineering, vol. 43, pp. 172-196, Jun. 2018.
  • [13] D. Prostański. “Dust control with use of air-water spraying system.” Archives of Mining Sciences, vol. 57(4), pp. 975- 990, Dec. 2012.
  • [14] Y. Qian et al. “A Review of 3D Printing Technology for Medical Applications.” Engineering, vol. 4(5), pp. 729-742, Oct. 2018.
  • [15] N. Shahrubudin, T.C. Lee, R. Ramlan. “An Overview on 3D Printing Technology: Technological, Materials, and Applications.” Procedia Manufacturing, vol. 35, pp. 1286-1296, 2019.
  • [16] A. Sheoran, H.Kumar. “Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research.” Materials Today: Proceedings, vol. 21, pp. 1659- 1672. Dec. 2019.
  • [17] M. Siegmund, D. Bałaga, M. Kalita. „Testing the parameters of spraying stream form fine-drops nozzles”. Mining Machines, vol. 3 pp. 3-13, Sep. 2018.
  • [18] S. Singh, S. Ramakrishna, R. Singh. “Material issues in additive manufacturing; a review.” Journal of Manufacturing Processes, vol. 25, pp. 185-200, Dec. 2016.
  • [19] M. Snopczyński, J. Kotliński, I. Musiałek. “Testing of mechanical properties of materials used in FDM technology.” Mechanik, vol. 4, pp. 285-287, Apr. 2019.
  • [20] M. Upadhyay, T. Sivarupan, M.E. Mansori. “3D printing for rapid sand casting – A review.” Journal of Manufacturing Processes, vol. 29, pp. 211-220, Oct. 2017.
  • [21] P. Wang, B. Zou, H. Xiao, S. Ding, C. Huang. “Effects of printing parameters of fused deposition modelling on mechanical properties, surface quality, and microstructure of PEEK.” Journal of Materials Processing Technology, vol. 271, pp. 62-74, Sep. 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e33194a-3ab7-4d46-a9db-c24f959366ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.