PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibilities for the Estimation of Electrospun Nanofibre Diameter Distribution by Normal (Gaussian) Distribution

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwości oceny rozkładu średnic nanowłókien uzyskanych poprzez elektroprzędzenie
Języki publikacji
EN
Abstrakty
EN
Fiber diameter and its distribution are one of the most important parameters related with the quality of electrospun web. The diameter of electrospun nanofibres is not uniform and the histograms of values are usually distributed differently. Analysis of literature sources showed that sometimes the distribution curves are similar to normal (Gaussian) distribution. Sometimes the distribution shapes are sophisticated and do not resemble this one. The problem arises because it is impossible to compare the average values of different measurement distributions, and a method with possibilities to compare the different results for estimation of nanofibre web quality is necessary. Yet, till now no standardized method for measurement of the diameter and evaluation of the distribution has been created. In this article, various distributions from literature sources and those of nanofibre diameter obtained during own experiments were analysed. Values of the nanofibre diameter are described by normal (Gaussian) and compound mathematical distributions. It was decided that the skew of distribution along with other characteristics can be used as criterion for web estimation and the diameter of nanofibres can be described by skewed normal (Gaussian) distribution when the coefficient of skewness is less than 0.5. The possibilities of estimation by compound distribution from a few normal distributions must be checked when the coefficient is higher.
PL
Średnica włókien i jej rozkład są jednym z najważniejszych parametrów związanych z jakością elektroprzędzionego runa. Średnica elektroprzędzionych nanowłókien jest zróżnicowana, jak i histogramy średnic, które są zwykle zróżnicowane. Analiza literatury wykazała, że czasami rozkłady są podobne do rozkładów normalnych. Czasami jednak rozkłady są bardziej skomplikowane i nie przypominają rozkładów Gaussowskich. Problem powstaje ponieważ jest niemożliwe porównanie średnich wartości średnic wynikających z rożnych pomiarów. Pożądane jest dysponowanie metodą umożliwiającą porównanie wyników uzyskanych przez rożnych badaczy. W artykule rozważono rożne rozkłady przedstawione w literaturze przedmiotu, jak również uzyskane przez autorów tego opracowania podczas własnych badań. Uzyskane rozkłady przedstawiono poprzez proste rozkłady normalne oraz rozkłady złożone. Stwierdzono, że skośność rozkładu plus dodatkowe parametry mogą być stosowane jako kryterium dla ocen elektroprzędzionego runa. Stwierdzono, że średnica nanowłókien może być określona przez skośny rozkład normalny kiedy współczynnik skośności jest mniejszy niż 0.5. Możliwość oceny rozkładu średnic poprzez złożone rozkłady normalne należy przeprowadzić kiedy współczynnik skośności jest wyższy.
Rocznik
Strony
23--28
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • Department of Materials Engineering, Kaunas University of Technology, Kaunas, Lithuania
autor
  • Department of Materials Engineering, Kaunas University of Technology, Kaunas, Lithuania
  • Department of Materials Engineering, Kaunas University of Technology, Kaunas, Lithuania
Bibliografia
  • 1. Xing XB, Wang YQ, Li BJ. Nanofiber drawing and nanodevice assembly inpoly(trimethylene terephthalate), Optics Express, 2008; 16, 14: 10815–10822.
  • 2. Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers, Angewandte Chemie (International ed. in English), 2002; 41, 7.
  • 3. Ma PX, Zhang R J. Synthetic nanoscale fibrous extracellular matrix. Biomed Mat Res1999; 46: 60–72.
  • 4. Niece KL, Hartgerink JD, Donners JJJM, Stupp SI. Self-assembly combining two bioactive peptideamphiphile molecules into nanofibers by electrostatic attraction. Journal of the American Chemical Society, 2003; 125, 24: 7146–7147.
  • 5. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup, Polymer 2007; 48, 3306-3316.
  • 6. Świątek J, Jarzebowski J, Cichon J. Investigation of Fibre Diameter Distribution in Non - Woven Textiles for Medical Applications in Melt-Blown Polyester Technology. Fibers and Textiles in Eastern Europe 2008; 16, 3(68): 14-16.
  • 7. Mazoochi T, Hamadanian M, Ahmadi M, Jabbari V. Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters. International Journal of Industrial Chemistry, 2012; 3, 2: 1-8.
  • 8. Ioannis S, Chronakis. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology 2005; 167: 283-293.
  • 9. Tucker T, Stanger JJ, Staiger MP, Kofman K. The history of the science and technology of electrospinning from 1600 to 1995. International Istanbul Textile Congress 2013, Book of Proceedings, 2013, Istanbul, Turkey, pp. 1-7.
  • 10. Cooley JF. Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids. United Kingdom Patent 6385, UK, 19th May 1900.
  • 11. Melcher JR, Warren EP. Electrohydrodynamics of a current-carrying semi-insulating jet. Journal of Fluid Mechanics 1971; 47: 127-143.
  • 12. Yener F, Jirsak O. Fabrication and optimization of polyvinyl butyral nanofibres produced by roller electrospinning, 12th AUTEX World Textile Conference, Book of Proceedings, Zadar, Croatia 2012, pp. 251-256.
  • 13. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003; 63: 2223-2253.
  • 14. Šukytė J, Adomavičiūtė E, Milašius R. Investigation of the possibility of forming nanofibres with potato starch, Fibres and Textiles in Eastern Europe 2010; 18, 5: 24-27.
  • 15. Chowdhury M, Stylios G. Effect of experimental parameters on the morphology of electrospun Nylon 6 fibres, International Journal of Basic and Applied Sciences 2010; 10, 6: 116-131.
  • 16. Adomavičiūtė E, Stanys S, Banuške-vičiūtė A, Milašius R. Influence of the Shape of the Bottom Rotating Electrode on the Structure of Electrospun Mats. Fibres and Textiles in Eastern Europe 2010; 18, 6: 49-53.
  • 17. Theron S A, Zussman E, Yarin A L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004; 45: 2017-2030.
  • 18. Heunis T, Bshena O, Klumperman B, Dicks L. Release of Bacteriocins from Nanofibers Prepared with Combinations of Poly(D,L-lactide) (PDLLA) and Poly(Ethylene Oxide) (PEO). International Journal of Molecular Sciences 2011; 12: 2158-2173 DOI:10.3390/ijms12042158.
  • 19. Dosunmu OO, Chase GG, Kataphinan W, Reneker DH. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology 2006; 17: 1123-1127.
  • 20. Jaworek A, Krupa A, Lackowski M, Sobczyk AT, Czech T, Ramakrishna S, Sundarrajan S, Pliszka D. Electrospinning and Electrospraying Techniques for Nanocomposite Non-Woven Fabric Production. Fibers and Textiles in Eastern Europe 2009; 17, 4: 77-81.
  • 21. Newehy MH, Deyab SS, Kenawy R, Megeed AA. Nanospider Technology for the Production of Nylon-6 Nanofibers for Biomedical Applications. Journal of Nanomaterials 2011, Article ID 626589, 8 pages DOI:10.1155/2011/626589.
  • 22. Yanilmaz M, Kalaoglu F, Karakas H. Investigation on the Effect of Process Variables on Polyurethane Nanofibre Diameter Using a Factorial Design. Fibers and Textiles in Eastern Europe, 2013; 21, 2(98): 19-21; Molnar K, Jedlovszky-Hajdu A, Czobel M, Weber Gy, Zrinyi M. International Istanbul Textile Congress 2013, Book of Proceedings, Istanbul, Turkey, 2013 pp. 1-6.
  • 23. Molnar K, Jedlovszky-Hajdu A, Czobel M, Weber Gy, Zrinyi M. Electrospun crosslinked poly(amino acid) based nanofibers for tissue engineering International Istanbul Textile Congress 2013, Book of Proceedings, Istanbul, Turkey, 2013 pp. 1-6.
  • 24. Aluigi A, Vineis C., Varesano A, Mazzuchetti G, Ferrero F, Tonin C. Structure and properties of keratin/PEO blend nanofibres. European Polymer Journal 2008; 44: 2465-2475.
  • 25. Almeida LKS, Chigome S, Torto N, Frost CL, Pletschke BI. A novel colorimetric sensor strip for the detection of glyphosate in water. Sensors and Actuators B: Chemical 2015; 206: 357-363.
  • 26. Ragaišienė A, Rukuižienė Ž, Mikučionienė D, Milašius R. Insertion of Electrospun Nanofibres into the Inner Structure of Textiles. Fibres and Textiles in Eastern Europe 2014; 22, 6(108): 59-62.
  • 27. Tan DH, Zhou C, Ellison CJ, Kumar S, Macosko CW, Bates FS. Meltblown fibers: Influence of viscosity and elasticity on diameter distribution. Journal of Non-Newtonian Fluid Mechanics 2010; 165: 892-900.
  • 28. Varabhas JS, Chase GG, Reneker DH. Electrospun nanofibers from a porous hollow tube. Polymer 2008; 49: 4226-4229.
  • 29. Malašauskienė J, Milašius R. Mathematical analysis of the diameter distribution of electrospun nanofibres. Fibres and Textiles in Eastern Europe 2010; 18, 6(83): 45-48.
  • 30. Tsimpliaraki A, Zuburtikudis I, Marras SI, Panayiotou C. Optimizing the nanofibrous structure of non-woven mats of electrospun bio-degradable polymer nanocomposites. Latest Advances in High Tech Textiles and Textile-Based Materials, Book of Proceedings, Ghent, Belgium, 2009, pp. 128-133.
  • 31. Leaf GAV. Practical Statistics for the Textile Industry: Part I, 1984.
  • 32. Casasola R, Thomas NL, Trybala A, Georgiadou S. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer 2014; 55: 4728-473.
  • 33. Malašauskienė J, Milašius R. Short-cut method of electrospun nanofibres diameter distribution estimation. Magic World of Textiles: 6th international textile clothing & design conference, Book of Proceedings, Dubrovnik, Croatia, 2012, pp. 522-525.
  • 34. Malašauskienė J, Milašius R. Investigation and Estimation of Structure of Web from Electrospun Nanofibres. Journal of Nanomaterials 2013, Article ID 416961, DOI: 10.1155/2013/416961.
  • 35. Milašius R, Malašauskienė J. Evaluation of Structure Quality of Web from Electrospun Nanofibres. Autex Research Journal 2014; 14, 4: 233-238 DOI: 10.2478/aut-2014-0023.
  • 36. Mahadevan S, Rajiv S. Antibiotic wound dressings. Society of Plastics Engineers, Plastics Research Online, 10.2417spepro.005485.
  • 37. Cassasola R., Thomas N L. Georgiadou S. Effect of Solvent Systems on Electrospun Polymeric Fibres: Preliminary Study on PolyLactid Acid (PLA). International Istanbul Textile Congress 2013, Book of Proceedings, Istanbul, Turkey, 2013.
  • 38. Deitzel JM, Kleinmeyer J, Harris D, Tan N C B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001; 42: 261-272.
  • 39. Yan X, Gevelber M. Investigation of Electrospun Fiber Diameter Distribution and Process Dynamics. Conference presentation, Session paper, 2009.
  • 40. Engstrom J, Hagstrom B. Centrifugal spinning of Nanofiber Webs- A Parameter Study of a Novel spinning Process. The Nordic Textile Journal 2009: 82-91.
  • 41. Gu S, Wu Q, Ren J. Preparation and surface structures of carbon nanofibers produced from electrospun PAN precursors. New Carbon Materials 2008; 23, 2: 171–176.
  • 42. Aluigi A, Tonetti C, Rombaldoni F, Varesano A, Vineis C, Mazzuchetti G. Methylene Blue Removal from Aqueous Solution by Keratin Nanofibres. Autex World Textile Conference Book of Proceedings, Zadar, Croatia, 2012.
  • 43. Buer A, Ugbolue SC, Warner SB. Electrospinning and Properties Some Nanofibers. Textile Research Journal 2001; 71, 4: 323-328.
  • 44. Krifa M, Yuan W. Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofiber membranes. Textile Research Journal 0(00) 1–13, DOI: 10.1177/0040517515609258,
  • 45. Kedem S, Schmidt J, Paz Y, Cohen Y. Composite Polymer Nanofibers with Carbon Nanotubes and Titanium Dioxide Particles. Langmuir 2005; 21, 12: 5600-5604.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e2d8550-e052-432f-b6c8-74052bd8ba82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.