PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photosynthetic signatures of microbial colonies covering submerged hard surfaces as novel trophic status indicators : Baltic Sea studies

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aimed to determine photosynthetic signatures, i.e. photosynthetic energy storage (ES) efficiency and photoacoustic spectra of pigment-containing biofilm communities attached to submerged solid substrates in relation to the temporal variability of the trophic state of natural water. Biofouling phenomenon signatures on artificial solid surfaces, deployed in the shallow Baltic Sea waters (Gulf of Gdańsk, Poland) for a specific period of time, were determined over a three-year period using improved photoacoustic spectroscopy apparatus based on closed cell geometry. Selected chemical parameters (oxygen, nitrogen and phosphorus concentrations) and biological productivity (primary production and Chlorophyll a; hereinafter abbreviated as Chl a) of the water body were obtained from the SatBałtyk System platform (http://satbaltyk.iopan.gda.pl) and used as comprehensive data. As a result, close cross-correlations between photosynthetic energy storage and PAS amplitude spectra and the seawater chemical parameters were demonstrated. As found, ES was negatively correlated with concentrations of biogenic elements (correlation coefficient R given in brackets): O (–0.67), P (–0.81), N (–0.76), and positively correlated with concentrations of Chl a (0.82) and primary production (0.39). As periphyton is believed to respond dynamically to water quality and environmental stresses, its photosynthetic system features can be used as novel, modern and robust indicators in marine bioassessment, in addition to traditional trophic state indices based on chemical analysis.
Czasopismo
Rocznik
Strony
194--201
Opis fizyczny
Bibliogr. 29 poz., map., rys., wykr.
Twórcy
  • Department of Physics, Gdynia Maritime University, Gdynia, Poland
  • Institute of Experimental Physics, Faculty of Mathematics, University of Gdańsk, Gdańsk, Poland
  • Institute of Experimental Physics, Faculty of Mathematics, University of Gdańsk, Gdańsk, Poland
  • Institute of Experimental Physics, Faculty of Mathematics, University of Gdańsk, Gdańsk, Poland
Bibliografia
  • 1. Azam, F., Malfatti, F., 2007. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782-791. https://doi.org/10.1038/nrmicro1747
  • 2. Azeredo, J., Azevedo, N.F., Braindet, R., Cerca, N., Coenye, T.,Costa, A.R., Desvaux, M., Bonaventura, G., Hébraud, M.,Jaglic, Z., Kačániová, M., Knøchel, S., Lourenço, A., Mergulhão, F., Meyer, R.L., Nychas, G., Simões, M., Tresse, O., Sternberg, C., 2017. Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313-351. https://doi.org/10.1080/1040841X.2016.1208146
  • 3. Bageshwar, D.V., Pawar, A.S., Khanvilkar, V.V., Kadam, V.J., 2010.Photoacoustic spectroscopy and its applications - a tutorial review. Eurasian J. Anal. Chem. 5, 187-203.
  • 4. Baier, R.E., 2006. Surface behaviour of biomaterials: The theta surface for biocompatibility. J. Mater. Sci.: Mater. Med. 17, 1057-1062. https://doi.org/10.1007/s10856- 006-0444-8
  • 5. Boniewicz-Szmyt, K., Pogorzelski, S.J., 2019. Surface energy of solids: Selection of effective substrates for bioadhesion in aqueous media. Sci. J. Gdynia Marit. Univ. 112, 7-22. https://doi.org/10.26408/112.01
  • 6. Carpentier, R., Leblanc, R.M., Mimeault, M., 1989. Photoacoustic detection of photosynthetic energy storage in photosystem II submembrane fractions. Biochim. Biophys. Acta 808, 293-299. https://doi.org/10.1016/s0005-2728(89)80345-7
  • 7. Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22, 361-639. https://doi.org/10.4319/lo.1977.22.2.0361
  • 8. Charland, M., Leblanc, R.M., 1993. Photoacoustic spectroscopy applied to biological systems. Bull. Inst. Chem. Res. Kyoto Univ. 71, 226-244.
  • 9. Dang, H., Lovell, C.R., 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80, 91-138. https://doi.org/10.1128/MMBR.00037-15
  • 10. Fischer, M., Friedrichs, G., Lachnit, T., 2014. Fluorescent-based quasi-continuous and in situ monitoring of biofilm formation dynamics in natural marine environments. Appl. Environ. Microbiol. 80, 3721-3728. https://doi.org/10.1128/AEM.00298-14
  • 11. Fisher, M., Triggs, G.J., Krauss, T.F., 2016. Optical sensing of microbial life on surfaces. Appl. Environ. Microbiol. 82, 1362-1371. https://doi.org/10.1128/AEM.03001-15
  • 12. Grzegorczyk, M., Pogorzelski, S.J., Pospiech, A., Boniewicz-Szmyt, K., 2018. Monitoring of marine biofilm formation dynamics at submerged solid surfaces with multitechnique sensors. Front. Mar. Sci. 5 (363), 1-16. https://doi.org/10.3389/fmars.2018.00363
  • 13. Guskos, N., 2008. Photoacoustic response of active biological systems. Opt. Mater. 30, 814-816. https://doi.org/10.1016/j.optmat.2007.02.004
  • 14. Haisch, Ch., 2012. Photoacoustic spectroscopy for analytical measurements. Meas. Sci. Technol. 23 (1), 012001, 17 pp. https://doi.org/10.1088/0957-0233/23/1/012001
  • 15. Kazemipour, F., Meleder, V., Launeau, P., 2011. Optical properties of microphytobenthic biofilms (MPBOM): Biomass retrieval implication. J. Quant. Spectrosc. Radiat. Transf. 112, 131-142. https://doi.org/10.1016/j.jqsrt.2010.08.029
  • 16. Lakshmi, K., Muthukumar, T., Doble, M., Vedaprakash, L., Kruparathnam, Dineshram, R., Jayaraj, K., Venkatesan, R., 2012. Influence of surface characteristics on biofouling formed on polymers exposed to coastal sea waters of India. Colloids Surf. B: Biointerfaces 91, 205-211. https://doi.org/10.1016/j.colsurfb.2011.11.003
  • 17. Mauzerall, D.C., Feitelson, J., Dubinsky, Z., 1998. Discriminating between phytoplankton taxa by photoacoustics. Isr. J. Chem. 38, 257-260. https://doi.org/10.1002/Ijch.199800028
  • 18. Pinchasov-Grinblad, Y., Hoffman, R., Goffredo, S., Falini, G., Dubinsky, Z., 2012. The effect of nutrient enrichment on three species of macroalgae as determined by photoacoustics. Marine Sci. 2 (6), 125-131. https://doi.org/10.5923/j.ms.20120206.03
  • 19. Pinchasov, Y., Porat, R., Zur, B., Dubinsky, Z., 2007. Photoacoustics: a novel tool for the determination of photosynthetic Energy storage efficiency in phytoplankton. Hydrobiologia 579, 251-256. https://doi.org/10.1007/s10750-006-0408-5
  • 20. Pogorzelski, S.J., Rochowski, P., Grzegorczyk, M., 2019. Photosynthetic energy storage efficiency in biofilms determined by photoacoustics. Proc. SPIE 11210, Fourteenth School on Acousto-Optics and Applications, 112100C. https://doi.org/10.1117/12.2540510
  • 21. Poulet, P., Cohen, D., Malkin, S., 1983. Photoacoustic detection of photosynthetic oxygen evolution from leaves. Quantitative analysis by phase and amplitude measurements. Biochim. Biophys. Acta 724, 433-446. https://doi.org/10.1016/0005-2728(83)90104-4
  • 22. Rochowski, P., Niedziałkowski, P., Pogorzelski, S.J., 2020. The benefits of photoacoustics for the monitoring of drug stability and penetration through tissue-mimicking membranes. Int. J. Pharm. 580, 119233. https://doi.org/10.1016/j.ijpharm.2020.119233
  • 23. Rosencwaig, A., 1980. Photoacoustics and Photoacoustic Spectroscopy. Wiley Intersci. Publ., New York, 309 pp.
  • 24. Schmid, T., 2006. Photoacoustic spectroscopy for process analysis. Anal. Bioanal. Chem. 384, 1071-1086. https://doi.org/10.1007/s00216-005-3281-6
  • 25. Schagerl, M., Donabaum, K., 2003. Patterns of major photosynthetic pigments in freshwater algae. 1. Cyanoprokaryota, Rhodophyta and Cryptophyta. Ann. Limnol. Int. J. Lim. 39, 35-47. https://doi.org/10.1051/limn/2003003
  • 26. Szurkowski, J., Ba ́scik-Remisiewicz, A., Matusiak, K., Tukaj, Z., 2001. Oxygen evolution and photosynthetic energy storage during the cell cycle of green alga Scenedesmus armatus characterized by photoacoustic spectroscopy. J. Plant Physiol. 158, 1061-1067. https://doi.org/10.1078/0176-1617-00244
  • 27. Szurkowski, J., Pawelska, I., Wartewig, S., Pogorzelski, S.J., 2000. Photoacoustic study of the interaction between thin oil layers with water. Acta Phys. Pol. A 97, 1073-1082. https://doi.org/10.12693/APhysPolA.97.1073
  • 28. Szurkowski, J., Tukaj, Z., 1995. Characterization by photoacoustic spectroscopy of the photosynthetic Scenedesmus armatus system affected by fuel oil contamination. Arch. Environ. Contam. Toxicol. 29, 406-410. https://doi.org/10.1007/BF00212508
  • 29. Veeranjaneyulu, K., Charland, M., Charlebois, D., Leblanc, R.M., 1991. Photosynthetic energy storage of Photosystem I and II in the spectral range of photosynthetically active radiation in intact sugar maple leaves. Photosynth. Res. 30, 131-138. https://doi.org/10.1007/BF00042011
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e2d46a2-0027-45bd-a91e-054ff81f88f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.