PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing the mechanical properties of Al-4.5Cu-xSi alloys through multi-pass friction stir processing and post-process aging

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of post-process aging on the microstructure and mechanical properties of multi-pass friction stir processed (FSPed) Al-4.5Cu alloy containing Si (1, 3, and 5 wt.%) was studied. According to the results, adding Si improved the fluidity and decreased the porosity content of the alloy. The addition of Si up to 3 wt.% also enhanced the mechanical properties. However, further addition of Si up to 5 wt.% impaired the tensile properties. Applying the first pass of FSP improved the tensile strength and fracture strain of the alloy containing 3 wt.% Si by 25 and 125%, respectively. However, the second and fourth pass of FSP substantially improved the fracture strain, but deteriorated the hardness and tensile strength of the alloy containing 3 wt.% Si. Post-FSP aging at 180 °C for 8 h significantly improved the mechanical properties. For instance, compared to the as-cast condition, the hardness, tensile strength, fracture strain, and toughness of post-aged four-pass FSPed Al-4.5Cu-3Si alloy increased by 107, 108, 175, and 310%, respectively. According to the fractography results, the fracture surface morphology of Al-4.5Cu-3Si alloy changed from a quasi-cleavage mode in as-cast condition to a ductile-dimple fracture mode after post-FSP aging.
Rocznik
Strony
art. no. e11, 2022
Opis fizyczny
Bibliogr. 62 poz., rys., wykr.
Twórcy
autor
  • Department of Materials Science and Metallurgy, Imam Khomeini International University, Qazvin, Iran
  • Department of Materials Science and Metallurgy, Imam Khomeini International University, Qazvin, Iran
  • Department of Materials Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Ganjefard K, Taghiabadi R, Talafi Noghani M, Ghoncheh MH. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si. Int J Miner Metall Mater. 2020. https://doi.org/10.1007/s12613-020-2039-7.
  • 2. Apelian D. Aluminum cast alloys: enabling tools for improved performance. Wheeling, Illinois: North American Diecast Asso-ciation; 2009.
  • 3. Kaufman JG, Rooy EL. Aluminum alloy castings: properties, processes, and applications. Materials Park: ASM International; 2004.
  • 4. Esfahani MRN, Niroumand B. Study of hot tearing of A206 aluminum alloy using Instrumented Constrained T-shaped Casting method. Mater Charac. 2010;61(3):318–24. https://doi.org/10.1016/j.matchar.2009.12.015.
  • 5. Luo L, Luo L, Su Y, Su L, Wang L, Chen R, Guo J, Fu H. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification. J Mater Sci Technol. 2021;79:1–14. https://doi.org/10.1016/j.jmst.2020.11.035.
  • 6. Li W, Cui S, Han J, Xu C. Effect of Silicon on the casting properties of Al-5.0% Cu alloy. Rare Met. 2006;25(6):133–5. https://doi.org/10.1016/s1001-0521(08)60067-4.
  • 7. Kang BK, Sohn I. Effects of Cu and Si contents on the fluidity, hot tearing, and mechanical properties of Al-Cu-Si alloys. Metall Mater Trans A. 2018;49(10):5137–45. https://doi.org/10.1007/s11661-018-4786-x.
  • 8. Plaza D, Asensio J, Pero-Sanz JA, Verdeja JI. Microstructure, a limiting parameter for determining the engineering range of compositions for light alloys. Mater Charac. 1998;40(3):145–58. https://doi.org/10.1016/s1044-5803(98)00004-7.
  • 9. Miura I, Hamanaka H, Isago T. Quench-modification of aluminum-silicon alloys by rapid solidification. J Japan Inst Metals. 1970;34(7):723–8. https://doi.org/10.2320/jinstmet1952.34.7_723.
  • 10. Ke D, Hengcheng L, Qiumin J, Yun T. Effect of hot extrusion on mechanical properties and microstructure of near eutectic Al–12.0%Si–0.2%Mg alloy. Mater Sci Eng A. 2010;527(26):6887–92. https://doi.org/10.1016/j.msea.2010.07.068.
  • 11. Khelfa T, Rekik MA, Muñoz-Bolaños JA, Cabrera-Marrero JM, Khitouni M. Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP). Int J Adv Manuf Technol. 2017;95(1–4):1165–77. https://doi.org/10.1007/s00170-017-1310-1.
  • 12. Shabestari SG, Shahri F. Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy. J Mater Sci. 2004;39(6):2023–32. https://doi.org/10.1023/b:jmsc.0000017764.20609.0d.
  • 13. Ogris E, Wahlen A, Lüchinger H, Uggowitzer PJ. On the silicon spheroidization in Al–Si alloys. J Light Metals. 2002;2(4):263–9. https://doi.org/10.1016/s1471-5317(03)00010-5.
  • 14. Dahle AK, Nogita K, McDonald SD, Dinnis C, Lu L. Eutectic modification and microstructure development in Al–Si alloys. Mater Sci Eng A. 2005;413–414:243–8. https://doi.org/10.1016/j.msea.2005.09.055.
  • 15. Hegde S, Prabhu KN. Modification of eutectic silicon in Al–Si alloys. J Mater Sci. 2008;43(9):3009–27. https://doi.org/10.1007/s10853-008-2505-5.
  • 16. Ibrahim M, Elgallad E, Valtierra S, Doty H, Samuel F. Metallurgical parameters controlling the eutectic silicon characteristics in Be-treated Al−Si−Mg alloys. Mater. 2016;9(2):78–95.
  • 17. Tillová E, Chalupová M, Hurtalová L. Changes of mechanical properties of AlSi7Mg0.3 cast alloy through filtration. Key Eng Mater. 2014;635:1–4. https://doi.org/10.4028/www.scientific.net/kem.635.1.
  • 18. Alkahtani S, Elgallad E, Tash M, Samuel A, Samuel F. Effect of rare earth metals on the microstructure of Al-Si based alloys. Materials. 2016;9(1):45. https://doi.org/10.3390/ma9010045.
  • 19. Sun N, Jones WJ, Apelian D. Friction stir processing of aluminum alloy A206: part II—tensile and fatigue properties. Int J Metalcasting. 2018;13(2):244–54. https:// doi. org/ 10. 1007/s40962-018-0268-6.
  • 20. Ma ZY, Sharma SR, Mishra RS, Mahoney MW. Microstructural modification of cast aluminum alloys via friction stir processing. Mater Sci Forum. 2003;426–432:2891–6. https://doi.org/10.4028/www.scientific.net/msf.426-432.2891.
  • 21. Węglowski MS. Friction stir processing—state of the art. Arch Civil Mech Eng. 2018;18(1):114–29. https://doi.org/10.1016/j.acme.2017.06.002.
  • 22. Ma ZY, Sharma SR, Mishra RS. Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metall Mater Trans A. 2006;37(11):3323–36. https://doi. org/ 10. 1007/ bf02586167.
  • 23. Meenia S, Khan F, Babu S, Immanuel RJ, Panigrahi SK, Janaki Ram GD. Particle refinement and fine-grain formation leading to enhanced mechanical behaviour in a hypo-eutectic Al–Si alloy subjected to multi-pass friction stir processing. Mater Charac. 2016;113:134–43. https://doi.org/10.1016/j.matchar.2016.01.011.
  • 24. Heidarzadeh A, Taghizadeh B, Mohammadzadeh A. Microstructure and mechanical properties of CuZn-Al2O3 nanocomposites produced by friction stir processing. Arch Civil Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00102-5.
  • 25. Patel V, Badheka V, Li W, Akkireddy S. Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy. Arch Civil Mech Eng. 2019;19(4):1368–80. https://doi.org/10.1016/j.acme.2019.08.007.
  • 26. Patel V, Li W, Liu X, Wen Q, Su Y, Shen J, Fu B. Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate. Mater Sci Eng A. 2020;784: 139322. https://doi.org/10.1016/j.msea.2020.139322.
  • 27. Patel V, Li W, Xu Y. Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy. Mater Manuf Proc. 2018;34(2):177–82. https://doi.org/10.1080/10426914.2018.1544716.
  • 28. Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: a review. J Mater Proc Technol. 2015;224:117–34. https://doi.org/10.1016/j.jmatprotec.2015.04.019.
  • 29. Teymoory P, Zarei-Hanzaki A, Farabi E, Monajati H, Abedi HR. Grain refinement through shear banding in severely plastic deformed A206 aluminum alloy. Adv Eng Mater. 2017;20(1):1700502. https://doi.org/10.1002/adem.201700502.
  • 30. Gholami S, Emadoddin E, Tajally M, Bothani E. Friction stir processing of 7075 Al alloy and subsequent aging treatment. Trans Nonferrous Metals Soc China. 2015;25(9):2847–55. https://doi.org/10.1016/s1003-6326(15)63910-3.
  • 31. Deore HA, Bhardwaj A, Rao AG, Mishra J, Hiwarkar VD. Consequence of reinforced SiC particles and post process artificial ageing on microstructure and mechanical properties of friction stir processed AA7075. Defence Technol. 2019. https://doi.org/10.1016/j.dt.2019.12.001.
  • 32. John Baruch L, Raju R, Balasubramanian V, Rao AG, Dinaharan I. Influence of multi-pass friction stir processing on microstructure and mechanical properties of die cast Al–7Si–3Cu aluminium alloy. Acta Metall Sinica (Eng Lett). 2016;29(5):431–40. https://doi.org/10.1007/s40195-016-0405-2.
  • 33. Al-Fadhalah K, Asi F. Aging behavior of aluminum alloy 6082 subjected to friction stir processing. Curr Comput-Aided Drug Des. 2018;8(9):337. https://doi.org/10.3390/cryst8090337.
  • 34. Cao G, Zhang D, Luo X, Zhang W, Zhang W. Effect of aging treatment on mechanical properties and fracture behavior of friction stir processed Mg–Y–Nd alloy. J Mater Sci. 2016;51(16):7571–84. https://doi.org/10.1007/s10853-016-0036-z.
  • 35. Wang S, Fan C. Crystal structures of Al2Cu revisited: understanding existing phases and exploring other potential phases. Metals.2019;9(10):1037. https://doi.org/10.3390/met9101037.
  • 36. Prados EF, Sordi VL, Ferrante M. The effect of Al2Cu precipitates on the microstructural evolution, tensile strength, ductility and work-hardening behaviour of a Al–4wt.% Cu alloy processed by equal-channel angular pressing. Acta Mater. 2013;61(1):115–25. https://doi.org/10.1016/j.actamat.2012.09.038.
  • 37. Di Sabatino M, Arnberg L, Apelian D. Progress on the understanding of fluidity of aluminium foundry alloys. Int J Metalcasting. 2008;2(3):17–27. https://doi.org/10.1007/bf03355430.
  • 38. Qian L, Toda H, Nishido S, Kobayashi T. Experimental and numerical investigations of the effects of the spatial distribution of α phase on fracture behavior in hypoeutectic Al–Si alloys. Acta Mater. 2006;54(18):4881–93. https://doi.org/10.1016/j.actamat. 2006.06.036.
  • 39. Gupta M, Ling S. Microstructure and mechanical properties of hypo/hyper-eutectic Al–Si alloys synthesized using a near-net shape forming technique. J Alloys Comp. 1999;287(1–2):284–94. https://doi.org/10.1016/s0925-8388(99)00062-6.
  • 40. Tiryakioğlu M, Netto N. Friction stir processing: effect on microstructure and mechanical properties in cast aluminum alloys. In: Encyclopedia of aluminum and its alloys. Boca Raton: CRC Press; 2019. https://doi.org/10.1201/9781351045636-140000347.
  • 41. Patel V, Li W, Vairis A, Badheka V. Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit Rev Solid State Mater Sci. 2019;44(5):378–426. https://doi.org/10.1080/10408436.2018.1490251.
  • 42. Soustani MF, Taghiabadi R, Jafarzadegan M, Vasheghani FM. Effect of multi-pass friction stir processing on microstructure and mechanical properties of cast Al-7Fe-5Ni alloy. Mater Res Exp. 2019;6(10): 106571. https://doi.org/10.1088/2053-1591/ab3829.
  • 43. Yousefi D, Taghiabadi R, Shaeri MH, Abedinzadeh P. Enhancing the mechanical properties of Si particle reinforced ZA22 composite by Ti–B modification. Int J Metalcasting. 2020. https://doi.org/10.1007/s40962-020-00447-w.
  • 44. Patel V, Li W, Liu X, Wen Q, Su Y. Through-thickness microstructure and mechanical properties in stationary shoulder friction stir processed AA7075. Mater Sci Technol. 2019;5(14):1762–9. https://doi.org/10.1080/02670836.2019.1641459.
  • 45. Nouri Z, Taghiabadi R, Moazami-Goudarzi M. Mechanical properties enhancement of cast Al-8.5Fe-1.3V-1.7Si (FVS0812) alloy by friction stir processing. Arch Civil Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00106-1.
  • 46. Sato YS, Park SHC, Kokawa H. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall Mater Trans A. 2001;32(12):3033–42. https://doi.org/10.1007/s11661-001-0178-7.
  • 47. Vyas H, Mehta KP. Effect of multi pass friction stir processing on surface modification and properties of aluminum alloy 6061. KeyEng Mater. 2019;813:404–10. http://doi.org/10.4028/www.scientific.net/KEM.813.404.
  • 48. Fujii H, Cui L, Nakata K, Nogi K. Mechanical properties of friction stir welded carbon steel joints-friction stir welding with and without transformation. Welding World. 2008;52(9–10):75–81. https://doi.org/10.1007/bf03266672.
  • 49. Anyalebechi PN. Hydrogen-induced gas porosity formation in Al–4.5 wt% Cu–1.4 wt% Mg alloy. J Mater Sci. 2013;48(15):5342–53. https://doi.org/10.1007/s10853-013-7329-2.
  • 50. Chen W, Wu S, Wang R. Effect of vibration on interdendritic feeding of Al–5%Cu–0.4%Mn alloy. Int J Metalcasting. 2019;13(4):969–78. https://doi.org/10.1007/s40962-019-00319-y.
  • 51. Cao H, Luo Z, Wang C, Wang J, Hu T, Xiao L, Che J. The stress concentration mechanism of pores affecting the tensile properties in vacuum die casting metals. Materials. 2020;13(13):3019. https://doi.org/10.3390/ma13133019.
  • 52. Tutunchilar S, Besharati Givi MK, Haghpanahi M, Asadi P. Eutectic Al–Si piston alloy surface transformed to modified hypereutectic alloy via FSP. Mater Sci Eng A. 2012;534:557–67. https://doi.org/10.1016/j.msea.2011.12.008.
  • 53. Das A, Tarafder S. Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel. Script Mater. 2008;59(9):1014–7. https://doi.org/10.1016/j.scriptamat.2008.07.012.
  • 54. Kapoor R, Kumar N, Mishra RS, Huskamp CS, Sankaran KK. Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy. Mater Sci Eng A. 2010;527(20):5246–54. https://doi.org/10.1016/j.msea.2010.04.086.
  • 55. Hung P, Sun P, Yu C, Kao P, Chang C. Inhomogeneous tensile deformation in ultrafine-grained aluminum. Script Mater. 2005;53(6):647–52. https://doi.org/10.1016/j.scriptamat.2005.05.036.
  • 56. Feng AH, Ma ZY. Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Script Mater. 2007;56(5):397–400. https://doi.org/10.1016/j.scriptamat.2006.10.035.
  • 57. Wang KS, Wang W, Guo W, Wang WL, Wu JL. Microstructure and properties of friction stir processed cast AZ31 magnesium alloy. Rare Metal Mater Eng. 2010;39(7):1275–8. https://doi.org/10.1016/S1002-0721(09)60104-6.
  • 58. Naeem HT, Mohammed KS, Ahmad KR. Effect of friction stir processing on the microstructure and hardness of an aluminum-zinc-magnesium-copper alloy with nickel additives. Phys Metals Metallogr. 2015;116(10):1035–46. https://doi.org/10.1134/s0031918x15100051.
  • 59. Feng AH, Xiao BL, Ma ZY, Chen RS. Effect of friction stir processing procedures on microstructure and mechanical properties of Mg-Al-Zn casting. Metall Mater Trans A. 2009;40(10):2447–56. https://doi.org/10.1007/s11661-009-9923-0.
  • 60. Ma ZY, Pilchak AL, Juhas MC, Williams JC. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Script Mater. 2008;58(5):361–6. https://doi.org/10.1016/j.scriptamat.2007.09.062.
  • 61. Jana S, Mishra RS, Baumann JA, Grant GJ. Effect of friction stir processing on microstructure and tensile properties of an investment cast Al-7Si-0.6Mg alloy. Metall Mater Trans A. 2010;41(10):2507–21. https:// doi. org/ 10. 1007/s11661-010-0324-1.
  • 62. Tsai FY, Kao PW. Improvement of mechanical properties of a cast Al–Si base alloy by friction stir processing. Mater Lett. 2012;80:40–2. https://doi.org/10.1016/j.matlet.2012.04.073.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e284894-cab1-4b5e-8fe0-7fa8640649a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.