PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-metallic reinforcements with different moduli of elasticity and surfaces for concrete structures

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of Fibre Reinforced Polymer (FRP) bars as internal reinforcement for concrete structures is increasing in civil engineering due to their advantageous properties, e.g. being insensitive to electrolytic corrosion. FRP bars have different mechanical and physical properties than traditional steel reinforcement, that makes the interaction between the FRP bars and concrete different to that of steel and concrete. One of the controversial aspects of structural behaviour of RC elements which are reinforced with FRP bars is the bond development. In this paper two experimental studies are presented investigating the bond development of FRP bars. Series 1 aimed to study the effect of the modulus of elasticity of FRP bars on the bond behaviour in concrete. Two types of FRP bars were used with similar properties (same surface profile and diameter), but with different modulus of elasticity. Series 2 meant to study the effect of the surface profile of FRP bars. Three types of GFRP bars were used (same nominal diameter of 16 mm, similar tensile strength and modulus of elasticity), with different surface profiles. Based on the results it was concluded that both the surface profile and the modulus of elasticity of FRP bars have effect of the bond behaviour in concrete. Bars with higher modulus of elasticity provided higher bond strength values.
PL
Zastosowanie prętów z włókien sztucznych (FRP) do zbrojenia konstrukcji betonowych w budownictwie rośnie z uwagi na ich korzystne właściwości, w tym np. odporność na korozję elektrolityczną. Właściwości mechaniczne i fizyczne prętów FRP różnią się w stosunku do tradycyjnego zbrojenia ze stali, co sprawia, że współpraca między prętami FRP i betonem różni się od współpracy stali z betonem. Jednym z kontrowersyjnych aspektów pracy elementów żelbetowych, które są zbrojone prętami FRP, jest rozwój przyczepności. W niniejszym artykule przedstawiono dwa badania eksperymentalne badające rozwój przyczepności prętów FRP. Pierwsza seria miała na celu zbadanie wpływu modułu sprężystości prętów FRP na przyczepność w betonie. Zastosowano dwa rodzaje prętów FRP o podobnych właściwościach (tak samo użebrowanych i o tej samej średnicy), ale o innym module sprężystości. Druga seria miała na celu zbadanie wpływu użebrowania prętów FRP. Zastosowano trzy rodzaje prętów GFRP (o tej samej średnicy nominalnej 16 mm, o podobnej wytrzymałości na rozciąganie i modułach sprężystości) o różnych użebrowaniach. Na podstawie uzyskanych wyników stwierdzono, że zarówno użebrowanie, jak i moduł sprężystości prętów FRP mają wpływ na przyczepność do betonu. Pręty o wyższym module sprężystości zapewniały wyższe wartości przyczepności.
Rocznik
Strony
79--88
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • Budapest University of Technology and Economics, Department of Construction Materials and Technologies, Muegyetem 3, 1111 Budapest, Hungary
  • Department of Civil and Structural Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
  • Budapest University of Technology and Economics, Department of Construction Materials and Technologies, Muegyetem 3, 1111 Budapest, Hungary
autor
  • Budapest University of Technology and Economics, Department of Construction Materials and Technologies, Muegyetem 3, 1111 Budapest, Hungary
Bibliografia
  • [1] ACI Committee 440. (2015). Guide for the design and construction of structural concrete reinforced with FRP bars. ACI 440.1R-15. Farmington Hills, MI. https://doi.org/10.1061/40753(171)158.
  • [2] AL-Mahmoud, F., Castel, A., François, R., & Tourneur, C. (2007). Effect of surface pre-conditioning on bond of carbon fibre reinforced polymer rods to concrete. Cement and Concrete Composites, 29(9), 677-689. https://doi.org/10.1016/j.cemconcomp.2007.04.010
  • [3] Arias, J. P. M., Vazquez, A., & Escobar, M. M. (2012). Use of sand coating to improve bonding between GFRP bars and concrete. Journal of Composite Materials, 46(February), 2271-2278. https://doi.org/10.1177/0021998311431994
  • [4] Baena, M., Torres, L., Turon, A., & Barris, C. (2009). Experimental study of bond behaviour between concrete and FRP bars using a pull-out test. Composites Part B: Engineering, 40(8), 784-797. https://doi.org/10.1016/j.compositesb.2009.07.003
  • [5] Balázs, G. L. (2008). Innovative materials and technologies for concrete stuctures. In Betontag (pp. 183-186). Wien: 24-25 April 2008.
  • [6] Balázs, G. L., & Borosnyói, A. (2001). Long-term behavior of FRP. In ASCE Proceedings of the Int. Workshop Composites in Construction A Reality (pp. 84-91). Capri, Italy: 20-21 July 2001.
  • [7] Borosnyói, A. (2014). Use of corrosion resistant Fibre Reinforced Polymer (FRP) reinforcements for the substitution of steel bars in concrete. Korróziósfigyelő, 54(1), 3-15.
  • [8] CAN/CSA-S6-06. (2006). Canadian Highway Bridge Design Code. Canadian Standards Association. Mississauga, Ontario, Canada.
  • [9] CAN/CSA-S806-02. (2002). Design and construction of building components with fiber reinforced polymers. Toronto: Canadian Standard Association.
  • [10] Cosenza, E., Manfredi, G., & Realfonzo, R. (1995). Analytical modelling of bond between FRP reinforcing bars and concrete. In L. Taerwe (Ed.), Non-metalic (FRP) reinforcement for concrete structure (pp. 164-171). London: E & FN Spon. https://doi.org/10.1145/2505515.2507827
  • [11] CSA-S806-12. (2012). Design and construction of building structures with fibre-reinforced polymers. Mississauga, Ontario, Canada: Canadian Standards Association.
  • [12] Ehsani, M. R., Saadatmanesh, H., & Tao, S. (1996). Design recommendations for bond of GFRP rebars to concrete. Journal of Structural Engineering, 247-254.
  • [13] fib. (2007). Bulletin 40: FRP reinforcement for RC structures. International Federation for Structural Concrete (fib).
  • [14] Focacci, F., Nanni, A., & Bakis, C. E. (2000). Local bond-slip relationship for FRP reinforcement in concrete. Journal of Composites for Construction, (February), 24-31.
  • [15] Guadagnini, M., Pilakoutas, K., Waldron, P., & Achillides, Z. (2004). Tests for the evaluation of bond properties of FRP bars in concrete. In 2nd International Conference on FRP Composites in Civil Engineering (CICE 2004) (pp. 343-350). Adelaide.
  • [16] Hao, Q., Wang, Y., He, Z., & Ou, J. (2009). Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete. Construction and Building Materials, 23(2), 865-871. https://doi.org/10.1016/j.conbuildmat.2008.04.011
  • [17] Hollaway, L. C. (2010). A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Construction and Building Materials, 24(12), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062
  • [18] Japanese Society of Civil Engineers (JSCE). (1997). Recommendations for design and construction for concrete structures using continuous fibre reinforcing materials. Concrete Engineering Series, (23).
  • [19] Krzywoń, R. (2016). Temperature in the adhesive layer of externally bonded composite reinforcement heated by the sun. Architecture Civil Engineering Environment, 9(1), 79-84.
  • [20] Lee, J. Y., Kim, T. Y., Kim, T. J., Yi, C. K., Park, J. S., You, Y. C., & Park, Y. H. (2008). Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete. Composites Part B: Engineering, 39(2), 258-270. https://doi.org/10.1016/j.compositesb.2007.03.008
  • [21] Lublóy, É., Balázs, G. L., Borosnyói, A., & Nehme, S. G. (2005). Bond of CFRP wires under elevated temperature. In Bond Behaviour of FRP in Structures (pp. 163-167). 7-9 Dec. 2005.
  • [22] Nanni, A., De Luca, A., & Zadeh, H. (2014). Reinforced Concrete with FRP Bars. CRC Press - Taylor & Francis Group. https://doi.org/10.1201/b16669
  • [23] Pawlowski, D., & Szumigala, M. (2015). Numerical study of the flexural behaviour of GFRP RC beams. Architecture Civil Engineering Environment, 8(2), 71-76.
  • [24] Pour, S. M., Alam, M. S., & Milani, A. S. (2016). Improved bond equations for Fiber-Reinforced Polymer bars in concrete. Materials, 9(737), 1-14. https://doi.org/10.3390/ma9090737
  • [25] Przygocka, M., Lasek, K., & Kotynia, R. (2015). Strengthening of RC slabs with prestressed and nonprestressed NSM CFRP strips. Architecture Civil Engineering Environment, 8(3), 79-86.
  • [26] Raicic, V., Ibell, T., Darby, A., Evernden, M., & Orr, J. (2015). Behaviour of Deep Embedded FRP/Steel bars. In SMAR 2015 - The Third Conference on Smart Monitoring, Assessment and Rehabilitation of Structures (pp. 1-8). Antalya, Turkey.
  • [27] Robert, M., & Benmokrane, B. (2010). Effect of aging on bond of GFRP bars embedded in concrete. Cement and Concrete Composites, 32(6), 461-467. https://doi.org/10.1016/j.cemconcomp.2010.02.010
  • [28] Schöck. (2013). Schöck ComBAR Technical Information. Retrieved from http://www.schoeckcombar.com/comb/download-combar1?type=7 &filter=1. Downloaded: August 2017
  • [29] Sólyom, S., & Balázs, G. L. (2016). Influence of FRC on bond characteristics of FRP reinforcement. In 11th fib International PhD Symposium in Civil Engineering (pp. 271-278). Tokyo, J.
  • [30] Tighiouart, B., Benmokrane, B., & Gao, D. (1998). Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars. Construction and Building Materials, 12(8), 453-462. https://doi.org/10.1016/S0950-0618(98)00027-0
  • [31] Veljkovic, A., Carvelli, V., Haffke, M. M., & Pahn, M. (2017). Concrete cover effect on the bond of GFRP bar and concrete under static loading. Composites Part B: Engineering, 124, 40-53. https://doi.org/10.1016/j.compositesb.2017.05.054
  • [32] VRod. (2013). V-Rod standard straight bars. Retrieved from http://www.vrodcanada.com/productdata/gfrp/v-rod-40gpa-gi-technical-specifications. Downloaded: August 2017
  • [33] Yan, F., Lin, Z., & Yang, M. (2016). Bond mechanism and bond strength of GFRP bars to concrete: A review. Composites Part B: Engineering, 98, 56-69. https://doi.org/10.1016/j.compositesb.2016.04.068
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e1e6b99-0ae4-4ad3-a5c2-26028e06edaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.