PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative method of rolling railcar axles using segmented tool assemblies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a novel method for rolling railcar axles using wedge tools of considerable length (about 8 m). The tools are divided into 28 components which are mounted in a tool assembly that moves in a way resembling caterpillar drive. The advantages of the proposed method include no tool idling and relatively low forming loads. A design of a segmented rolling mill with two identical tool assemblies is presented. The feasibility of the proposed solution is verified via numerical simulations conducted in Simufact.Forming. A rolling process for producing a BA3002 type railcar axle from both a cylindrical and a rectangular billet is analysed in detail. Maps of effective strain, temperature and damage function in the workpiece are shown for both cases considered. These maps clearly show that a rail axle of good quality is obtained in both rolling processes. In addition, by analysing the forming load distributions, the power of the rolling mill drive system was also estimated, which was found to be significantly higher in the case of rolling from a rectangular billet.
Twórcy
  • Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Ningbo University, Fenghua Rd. No. 818, 314211 Ningbo, China
autor
  • Ningbo University, Fenghua Rd. No. 818, 314211 Ningbo, China
Bibliografia
  • 1. Shu, X., Ye, C., Xia, Y., Zhang, S., Wang, Y., Xu, H., & Deng, Y. (2023). Analysis and prospect of precision plastic forming technologies for production of high-speed train hollow axles. *Metals, 13*(1), e145. https://doi.org/10.3390/met13010145
  • 2. Pater, Z., Tomczak, J., & Bulzak, T. (2020). Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. *Journal of Materials Research and Technology, 9*(5), 10434–10446. https://doi.org/10.1016/j.jmrt.2020.07.062
  • 3. Wang, J. T., Shu, X. D., Ye, C. Q., Xia, Y. X., Zhang, S., & Li, S. X. (2022). Research on metal reflow law of three-roll skew rolling (TRSR) hollow axle. *Metalurgija, 61*(3–4), 703–705.
  • 4. Pater, Z., Tomczak, J., & Bulzak, T. (2015). Numerical analysis of the skew rolling process for main shafts. *Metalurgija, 54*(4), 627–630.
  • 5. Xu, C., & Shu, X. D. (2018). Influence of process parameters on the forming mechanics parameters of the three-roll skew rolling forming of the railway hollow shaft with 1 : 5. *Metalurgija, 57*(3), 153–156.
  • 6. Pater, Z., Tomczak, J., Bulzak, T., Wójcik, Ł., & Skripalenko, M. M. (2021). Prediction of ductile fracture in skew rolling processes. *International Journal of Machine Tools and Manufacture, 163*, e103706. https://doi.org/10.1016/j.ijmachtools.2021.103706
  • 7. Wang, J., Shu, X., & Ye, C. (2023). Study on forming quality of three-roll skew rolling hollow axle. *The International Journal of Advanced Manufacturing Technology, 128*, 1089–1100. https://doi.org/10.1007/s00170-023-11893-1
  • 8. Tomczak, J., Pater, Z., Bulzak, T., et al. (2021). Design and technological capabilities of a CNC skew rolling mill. *Archives of Civil and Mechanical Engineering, 21*, e72. https://doi.org/10.1007/s43452-021-00205-7
  • 9. Pater, Z., Tomczak, J., Lis, K., et al. (2020). Forming of rail car axles in a CNC skew rolling mill. *Archives of Civil and Mechanical Engineering, 20*, e69. https://doi.org/10.1007/s43452-020-00075-5
  • 10. Zhang, S., Shu, X., Wang, J., et al. (2024). The mechanism of forming hollow shafts with constant wall thickness by three-roll skew rolling. *Metals, 14*(6), e702. https://doi.org/10.3390/met14060702
  • 11. Zheng, S., Shu, X., Han, S., & Yu, P. (2019). Mechanism and force-energy parameters of a hollow shaft’s multi-wedge synchrostep cross-wedge rolling. *Journal of Mechanical Science and Technology, 33*(5), 1–10. https://doi.org/10.1007/s12206-019-0411-1
  • 12. Pater, Z. (2022). Study of cross wedge rolling process of BA3002-type railway axle. *Advances in Science and Technology Research Journal, 16*(2), 225–231. https://doi.org/10.12913/22998624/147310
  • 13. Pater, Z., & Tomczak, J. (2018). A new cross wedge rolling process for producing rail axles. *MATEC Web of Conferences, 190*, 11006. https://doi.org/10.1051/matecconf/201819011006
  • 14. Pater, Z., Tomczak, J., & Bulzak, T. (2023). Novel cross wedge rolling method for producing railcar axles. *The International Journal of Advanced Manufacturing Technology, 128*, 3403–3413. https://doi.org/10.1007/s00170-023-12142-1
  • 15. Peng, W., Sheng, S., Chiu, Y., Shu, X., & Zhan, L. (2016). Multi-wedge cross wedge rolling process of 42CrMo4 large and long hollow shaft. *Rare Metal Materials and Engineering, 45*(4), 836–842. https://doi.org/10.1016/S1875-5372(16)30084-4
  • 16. Bulzak, T. (2023). Multi-wedge cross rolling of axle forgings. *Archives of Metallurgy & Materials, 68*(2), 697–701.
  • 17. Bulzak, T. (2021). Ductile fracture prediction in cross-wedge rolling of rail axles. *Materials, 14*, e6638. https://doi.org/10.3390/ma14216638
  • 18. Bulzak, T., Pater, Z., & Tomczak, J. (2023). Modified hybrid criterion for the cross wedge rolling process. *Journal of Manufacturing Processes, 107*, 496–505. https://doi.org/10.1016/S1875-5372(16)30084-4
  • 19. Jia, C., Huo, Y., Hosseini, S. R. E., Wu, W., Huo, C., & Wang, B. (2022). Numerical prediction of ductile damage evolution of 40CrNoMo railway axle steel during hot cross wedge rolling. *Materials Today Communications, 33*, e104942, 1–11. https://doi.org/10.1016/j.mtcomm.2022.104942
  • 20. Sun, W., Wu, X., & Yang, C. (2023). Mechanism and control scheme of central defects in cross wedge rolling of railway vehicle axles. *Metals, 13*, e1309. https://doi.org/10.3390/met13071309
  • 21. Cheng, M., Shi, M. J., & Vladimir, P. (2021). Novel evaluation method for metal workability during cross wedge rolling process. *Advances in Manufacturing, 9*, 473–481. https://doi.org/10.1007/s40436-020-00344-9
  • 22. Pater, Z., Tomczak, J., & Bulzak, T. (2018). New forming possibilities in cross wedge rolling processes. *Archives of Civil and Mechanical Engineering, 18*(1), 149–161. https://doi.org/10.1016/j.acme.2017.06.005
  • 23. Jia, Z., Wei, B., & Sun, X. (2021). Study on the formation and prevention mechanism of internal voids in cross wedge rolling. *The International Journal of Advanced Manufacturing Technology, 115*, 3579–3587. https://doi.org/10.1007/s00170-021-07367-x
  • 24. Cao, Q., Hua, L., & Qian, D. (2015). Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls. *Journal of Central South University, 22*, 1175–1183. https://doi.org/10.1007/s11771-015-2631-6
  • 25. Lu, L., Wang, Z., Wang, F., Zhu, G., & Zhang, X. (2011). Simulation of tube forming process in Mannesmann mill. *Journal of Shanghai Jiaotong University (Science), 16*(3), 281–285. https://doi.org/10.1007/s12204-011-1144-1
  • 26. Chen, S. Y., Shu, X. D., Xu, Y. M., Chen, Q., Xu, H. J., Sun, B. S., Wang, Y., & Deng, Y. M. (2022). Research on forming quality of GH4169 superalloy multi-step hollow turbine shaft by three-roll skew rolling. *Journal of Modern Mechanical Engineering and Technology, 9*, 55–66. https://doi.org/10.31875/2409-9848.2022.09.7
  • 27. Zhang, H., Wang, B., Lin, L., et al. (2022). Numerical analysis and experimental trial of axial feed skew rolling for forming bars. *Archives of Civil and Mechanical Engineering, 22*, e17. https://doi.org/10.1007/s43452-021-00334-z
  • 28. Berti, G. A., Quagliato, L., & Monti, M. (2015). Set-up of radial-axial ring-rolling process: Process worksheet and ring geometry expansion prediction. *International Journal of Mechanical Sciences, 99*, 58–71. https://doi.org/10.1016/j.ijmecsci.2015.05.004
  • 29. Quagliato, L., & Berti, G. A. (2016). Mathematical definition of the 3D strain field of the ring in the radial-axial ring rolling process. *International Journal of Mechanical Sciences, 115-116*, 746–759. https://doi.org/10.1016/j.ijmecsci.2016.07.009
  • 30. Lulkiewicz, J., Kawałek, A., Bajor, T., et al. (2024). Theoretical analysis of radial-axial ring rolling process of 7075 aluminium alloy. *Advances in Science and Technology Research Journal, 18*(4), 386–399. https://doi:10.12913/22998624/189901
  • 31. Pater, Z., Gontarz, A., Tomczak, J., et al. (2021). Determination of the critical value of material damage in a cross wedge rolling test. *Materials, 14*(7), e1586. https://doi.org/10.3390/ma14071586
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e1ba8fe-4cce-42e6-994f-6044b5cc02a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.