PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with an issue of a rotational motion impact on a construction and presents civil engineering applications of a fiber optic rotational seismograph named Fiber-Optic System for Rotational Events & Phenomena Monitoring. It has been designed for a long- term building monitoring and structural rotations’ recording. It is based on the Sagnac effect which enables to detect one-axis rotational motion in a direct way and without any reference system. It enables to detect a rotation component in the wide range of a signal amplitude from 10-8 rad/s to 10 rad/s, as well as a frequency from DC to 1000 Hz. Data presented in this paper show the behavior of a reinforced concrete frame construction on different floors. Several measurements were carried out by placing the applied sensor on different floor levels of a building. The laboratory and in-situ measurements confirmed that Fiber-Optic System for Rotational Events & Phenomena Monitoring is an accurate and suitable device for applications in civil engineering.
Rocznik
Strony
69--73
Opis fizyczny
Bibliogr. 17 poz., wykr., rys., fot., tab.
Twórcy
  • Institute of Technical Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
  • Institute of Technical Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
  • Elproma Elektronika Ltd., 13 Szymanowskiego St., Łomianki 05-092, Poland
  • Dep. of Microelectronics and Computer Science, Lodz University of Technology, 221/223 Wólczańska St., Lodz 90-924, Poland
Bibliografia
  • [1] Havskov, J., Alguacil, G. Instrumentation in Earthquake Seismology, 2nd ed. (Springer: Cham, Switzerland, 2016).
  • [2] Huang, B. S. Ground Rotational Motions of the 1991 Chi-Chi, Taiwan, Earthquake Asinferred from Dense Array Observations. Geophys. Res. Lett. 30 (6), 1307–1310 (2003). https://doi.org/10.1029/2002GL015157.
  • [3] Igel, H., Schreiber, U., Flaws, A., Schuberth, B., Velikoseltsev, A., Cochard, A. Rotational Motions Induced by the M8.1 Tokachi-Oki Earthquake, September 25, 2003, Geophys. Res. Lett. 32, (2005). https://doi.org/10.1029/2004GL022336.
  • [4] Igel, H., Cochard, A., Wassermann, J., Flaws, A., Schreiber, U., Velikoseltsev, A., Pham Dinh, N. Broad-Band Observations of Earthquake-Induced Rotational Ground Motions, Geophys. J. Int. 168 (1), 182–196 (2007). https://doi.org/10.1111/j.1365-246X.2006.03146.x.
  • [5] Takeo, M. Ground Rotational Motions Recorded in Near- Source Region of Earthquakes, in Earthquake Source Asymmetry, Structural Media and Rotation Effects (eds. Teisseyre, R., Takeo, M., Majewski, E.) 157–167 (Springer-Verlag Berlin Heidelberg, 2006).
  • [6] Trifunac, M. D. A Note on Rotational Components of Earthquake Motions on Ground Surface for Incident Body Waves, Int. J. Soil Dyn. Earthq. Eng. 1 (1), 11–19 (1982). https://doi.org/10.1016/0261-7277(82)90009-2.
  • [7] Trifunac, M. D. Effects of Torsional and Rocking Excitations on the Response of Structures. in Earthquake Source Asymmetry, Structural Media and Rotation Effects (eds. Teisseyre, R., Takeo, M., Majewski, E.) 569–582(Springer-Verlag Berlin Heidelberg, 2006).
  • [8] Mai, P. Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures. in the Near Field of Earthquake Ruptures (eds. Meyers R.) 623–662 (Springer, New York, 2011).
  • [9] Jaroszewicz, L. R., Kurzych, A. T., Krajewski, Z., Marć, P., Kowalski, J. K., Bobra, P., Zembaty, Z., Sakowicz, B., Jankowski R. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications, Sensors 16 (12), 2161 (2016), https://doi.org/10.3390/s16122161
  • [10] Zembaty, Z. Numerical Analyses of Seismic Ground Rotations from the Wave Passage Effects. in Seismic Behaviour and Design of Irregular and Complex Civil Structures (eds. Lavan, O., De Stefano, M.) 15–28 (Springer, 2013).
  • [11] Sagnac, G. L’éther Lumineux Démontré Par l’effet Du Vent Relatif d’éther Dans Un Interféromètre En Rotation Uniforme, CompteRendus À L’Académie Sci. 95, 708-10 (1913).
  • [12] Post, E. J. Sagnac Effect, Rev Mod Phys 39 (2), 475–493 (1967). https://doi.org/10.1103/RevModPhys.39.475.
  • [13] Michelson, A. A., Gale, H. G. The Effect of the Earth’s Rotation on the Velocity of Light, Nature 115, 566–566 (1925). https://doi.org/10.1038/115566a0.
  • [14] Lefèvre, H. C. The Fiber-Optic Gyroscope, 2 nd ed., Chap. 8 (Artrech House, United Kingdom, 2014).
  • [15] Jaroszewicz, L. R. Kurzych, A. T. Krajewski, Z. Teisseyre, K. Dudek, M. Kowalski, J. K. Experimental Perspectives for Rotational Seismology – Construction of Optical Fiber Sensors Set, 5 th worksop of International Working Group on Rotational Seismology, IWGoRS Workshop (2019).
  • [16] Freescale Semiconductor, Inc., Allan Variance: Noise Analysis for Gyroscopes (2005).
  • [17] Levin, B. W., Sasorova, E. V., Steblov, G. M., Domanski A. V., Prytkov, A. S., Tsyba, E. N. Variations of the Earth's Rotation Rate and Cyclic Processes in Geodynamics, Geodesy and Geodynamics 8, 206–212 (2017). https://doi.org/10.1016/j.geog.2017.03.007.
Uwagi
1. A. T. Kurzych, L. R. Jaroszewicz: FOSREM’s optical part construction and article preparation, as well as research conducting; J. K. Kowalski, B. Sakowicz: FOSREM’s electronic part construction and data processing.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e19e876-ceed-4eee-bb3d-f9bb3eeab881
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.