PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena dokładności odwzorowania wałów i przewałów w numerycznym modelu terenu polderu Majdany

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Assessment of Mapping of Embankments and Control Structure on Digital Elevation Model Based upon Majdany Polder
Języki publikacji
PL
Abstrakty
EN
The aim of this study was to assess the accuracy of mapping of embankments and embankments control structure as the most important elements affecting the Majdany polder hydraulic characteristics. The polder was built between 1965 and1969 years as part of the drainage valley Tralalka. Area of the polder is equal to around 580 hectares. Capacity is equal up to 3.7 million m3. The polder is located about 4 km southeast of the city Kolo, in the valleys of the Warta, Ner and Rgilewka river network. The paper presents an analysis of the accuracy of the available digital elevation models (DEM) for Majdany polder in TIN format, which were worked out in 2009 on a scale 1:10 000. DEM worked out in 2011 based up on LIDAR data is presented in a scale 1:2 500. DEM in 2009 was worked out on the basis of aerial photographs in the scale of 1:26 000 and is available in the form of TIN, and LIDAR DTM-made ISOK project was based on airborne laser scanning (LIDAR) and it is available in LAS format. An assessment was carried out in the section embankments about 1.4 kilometers representing 21% of the total length of the embankments on the polder and one of embankment control structure 218 m in length. A total of 651 measurements with Sokkia GPS was done including 496 and 155 measurements on embankment and control structure respectively. DEM accuracy assessment was performed separately for embankments and control structures. Due to the fact that the distribution of errors of embankments was close to a normal distribution, the following statistical measures was used: Root Mean Square Error (RMSE), mean error (ME) average and standard deviation (SD). Due to the fact that the distribution of the error for embankment control structure on DEM significantly deviates from a normal distribution robust statistical methods like: median, Normalized Median Absolute Deviation (NMAD), 68.3% and 95% quartile was applied. The study showed that the data quality obtained from DEM are usually not sufficient for modeling embankment and control structure. Therefore, if the DEM generate the above data source (LIDAR or aerial images) is acceptable – talking only of polder topography, in order to estimate the volume and modeling its work unacceptable due to the relatively large errors in the mapping embankment control structures. It is necessary improve these DEM even by direct measurements of the same terrain such as GPS-RTK devices.
Rocznik
Strony
2711--2724
Opis fizyczny
Bibliogr. 21 poz., tab., rys.
Twórcy
autor
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
Bibliografia
  • 1. Anderson E. S., Thompson J. A., Crouse D. A., Austin R. E.: Horizontal resolution and data density effects on remotely sensed LIDAR-based DEM. Geoderma, Volume 132, Issues 3–4, 406–415 (2006).
  • 2. Ardiansyah P. O. D., Yokoyama R.: DEM generation method from contour lines based on the steepest slope segment chain and a monotone interpolation function. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 57, Issues 1–2, 86–101 (2002).
  • 3. Caviedes-Voulliéme D., García-Navarro P., Murillo J.: Influence of mesh structure on 2D full shallow water equations and SCS curve number simulation of rainfall/runoff events, Journal of Hydrology, Available online 16 April 2012.
  • 4. Coveney S., Fotheringham A.S., Charlton M., McCarthy T.: Dual-scale validation of a medium-resolution coastal DEM with terrestrial LiDAR DSM and GPS. Computers & Geosciences, Volume 36, Issue 4, 489–499 (2010).
  • 5. Hashimoto T.: DEM generation from stereo AVNIR images. Advances in Space Research, Volume 25, Issue 5, 931–936 (2000).
  • 6. Hengl T., Gruber S., Shrestha D.P.: Reduction of errors in digital terrain parameters used in soil-landscape modeling. International Journal of Applied Earth Observation and Geoinformation, Volume 5, Issue 2, 97–112 (2004).
  • 7. Hladik Ch., Alber M.: Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sensing of Environment, Volume 121, 224–235 (2012).
  • 8. Höhle J., Höhle M.: Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 398–406 (2009).
  • 9. Horritt M.S., Bates P.D., Mattinson M.J.: Effects of mesh resolution and topographic representation in 2D finite volume models of shallow water fluvial flow. Journal of Hydrology, Volume 329, Issues 1–2, 306–314 (2006).
  • 10. Kornus W., Alamús R., Ruiz A., Talaya J.: DEM generation from SPOT-5 3-fold along track stereoscopic imagery using autocalibration. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 60, Issue 3, 147–159 (2006).
  • 11. Li J., Wong D. W. S.: Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems, Volume 34, Issue 3, 251–261 (2010).
  • 12. Projekt budowlano-wykonawczy „Polder Majdany – podwyższenie wału prawostronnego rzeki Ner i Warty gm. .Dąbie” – Hydroprojekt 2002.
  • 13. Rozporządzenie Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dn. 20 grudnia 1996 r. w sprawie Warunków technicznych, jakim powinny odpowiadać obiekty budowlane gospodarki wodnej i ich usytuowanie. Dz. Ustaw nr 21 poz. 111 z dn. 20 grudnia 1996 r.
  • 14. Shafique M., van der Meijde M., Kerle N., van der Meer F.: Impact of DEM source and resolution on topographic seismic amplification. International Journal of Applied Earth Observation and Geoinformation, Volume 13, Issue 3, 420–427 (2011).
  • 15. Sroka Z., Walczak Z., Wosiewicz B.J.: Analiza ustalonych przepływów wód gruntowych metodą elementów skończonych. Oprogramowanie inżynierskie. Wydawnictwa Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, Poznań, 178, (2004).
  • 16. Suárez J.P., Plaza A.: Four-triangles adaptive algorithms for RTIN terrain meshes. Mathematical and Computer Modelling, Volume 49, Issues 5–6, 1012–1020 (2009).
  • 17. Taud H., Parrot J.-F., Alvarez R.: DEM generation by contour line dilation. Computers & Geosciences, Volume 25, Issue 7, 775–783 (1999).
  • 18. Tinghua Ai, Jingzhong Li.: A DEM generalization by minor valley branch detection and grid filling. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 65, Issue 2, 198–207 (2010).
  • 19. Vaze J., Teng J., Spencer G.: Impact of DEM accuracy and resolution on topographic indices, Environmental Modelling & Software, Volume 25, Issue 10, 1086–1098 (2010).
  • 20. Xie K., Wu Y., Ma X., Liu Y., Liu B., Hessel R.: Using contour lines to generate digital elevation models for steep slope areas: a case study of the Loess Plateau in North China, CATENA, Volume 54, Issues 1–2, 161–171 (2003).
  • 21. Zhou Q., Chen Y.: Generalization of DEM for terrain analysis using a compound method, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 66, Issue 1, 38–45 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e159566-b595-4151-be9b-5e847b288ce4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.