Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effects of leachates from newly-synthesized bioplastics on the early stages of higher plant growth were studied together with the putative identification of the chemicals in the given microbioplastic leachates. Three polylactide-based bioplastics and pure polylactide (PLA) were subjected to the phytotoxicity tests (1) to determine the intrinsic effects of chemicals on the germination and early growth of plants without prior incorporation of the chemicals into a soil and (2) to find the impact of the chemicals introduced into a soil on the germination and plant growth. Plants Sorghum saccharatum, Lepidium sativum and Sinapis alba were used. For two out of four microbioplastics the total ion chromatograms revealed the presence of chemicals in the leachates. Out of 20 individual m/z values, 6 were putatively attributed to the known compounds. Microbioplastic leachates did not affect seed germination and contributed rather to the stimulation than inhibition of the early plant growth. In the soil tests the inhibition of root and shoot growth of dicotyledons occurred more frequently than in the liquid phase tests. It indicates the potential interactions between the chemicals in the leachates and soil matrix. Dicotyledons were more sensitive than monocotyledons in the evaluation of phytotoxicity of microbioplastic leachates.
Rocznik
Tom
Strony
art. no. e73
Opis fizyczny
Bibliogr. 28 poz., wykr., tab.
Twórcy
autor
- Lodz University of Technology, Institute of Environmental Engineering and Building Installations, al. Politechniki 6, 90-924 Łódź, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wólczańska 213, 93-005 Łódź, Poland
Bibliografia
- 1. Andrady A. L., Rajapakse N., 2019. Additives and chemicals in plastics. In: Takada H., Karapanagioti H.K. (Eds.), Hazardous chemicals associated with plastics in the marine environment. The Handbook of Environmental Chemistry, vol 78. Springer, 1–17. DOI: 10.1007/698_2016_124.
- 2. Arcos-Hernandez M.V., Laycock B., Pratt S., Donose B.C., Nikolić M.A.L., Luckman P., Werker A., Lant P.A., 2012. Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polym. Degrad. Stab., 97, 2301–2312. DOI: 10.1016/j.polymdegradstab.2012.07.035.
- 3. Balestri E., Menicagli V., Ligorinia V., Fulignati S., Raspolli Galletti A.M., Lardicci C., 2019. Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test. Ecol. Indic., 102, 569–580. DOI: 10.1016/j.ecolind.2019.03.005.
- 4. Berens A.R., 1997. Predicting the migration of endocrine dis-rupters from rigid plastics. Polym. Eng. Sci., 37, 391–395. DOI: 10.1002/pen.11681.
- 5. Capolupo M., Sørensen L., Jayasena K.D.R., Booth A.M., Fabbri E., 2020. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res., 169, 115270. DOI: 10.1016/j.watres.2019.115270.
- 6. ECHA, 2018. Plastic additives initiative. Available at: https://echa.europa.eu/plastic-additives-initiative.
- 7. EPA, 2016. A summary of literature on the chemical toxicity of plastics pollution to aquatic life and aquatic-dependent wildlife.
- 8. EPA-822-R-16-009, United States Environmental Protection Agency.
- 9. Fries E., Sühring R., 2023. The unusual suspects: screening for persistent, mobile, and toxic plastic additives in plastic leachates. Environ. Pollut., 335, 122263. DOI: 10.1016/j.envpol.2023.122263.
- 10. Gao Z., Yu H., Li M., Li X., Lei J., He D., Wu G., Fu Y., Chen Q., Shi H., 2022. A battery of baseline toxicity bioassays directed evaluation of plastic leachates – towards the establishment of bioanalytical monitoring tools for plastics. Sci. Total Environ., 828, 154387. DOI: 10.1016/j.scitotenv.2022.154387.
- 11. Gunaalan K., Fabbri E., Capolupo M., 2020. The hidden threat of plastic leachates: a critical review on their impacts on aquatic organisms. Water Res., 184, 116170. DOI: 10.1016/j.watres. 2020.116170.
- 12. Guo J.-J., Huang X.-P., Xiang L., Wang Y.-Z., Li Y.-W., Li H., Cai Q.-Y., Mo C.-H., Wong M.-H., 2020. Source, migration and toxicology of microplastics in soil. Environ. Int., 137, 105263. DOI: 10.1016/j.envint.2019.105263.
- 13. Hansen E., Nilsson N., Lithner D., Lassen C., 2013. Hazardous Substances in Plastic Materials. COWI in cooperation with Danish Technological Institute. Vejle, Denmark, 15 January 2013.
- 14. Henry R.J., Harris P.J., 1997. Molecular distinction between monocotyledons and dicotyledons: more than a simple dichotomy. Plant Mol. Biol. Rep., 15, 216–218. DOI: 10.1023/A:1007498823211.
- 15. ISO 18763:2016. Soil quality – Determination of the toxic effects of pollutants on germination and early growth of higher plants Test No. 208: Terrestrial plant test: seedling emergence and seedling growth test.
- 16. Judy J.D., Williams M., Gregg A., Oliver D., Kumar A., Kookana R., Kirby J.K., 2019. Microplastics in municipal mixed-wast organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environ. Pollut., 252, 522–531. DOI:10.1016/j.envpol.2019.05.027.
- 17. Lithner D., Damberg J., Dave G., Larsson Å., 2009. Leachates from plastic consumer products – screening for toxicity with Daphnia magna. Chemosphere, 74, 1195–1200. DOI: 10.1016/j.chemosphere.2008.11.022.
- 18. Lithner D., Nordensvan I., Dave G., 2012. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile–butadiene–styrene, and epoxy to Daphnia magna. Environ. Sci. Pollut. Res., 19, 1763–1772. DOI: 10.1007/s11356-011-0663-5.
- 19. Liwarska-Bizukojc E., 2023. Effect of innovative bio-based plastics on early growth of higher plants. Polymers, 15, 438. DOI: 10.3390/polym15020438.
- 20. Makhaye G., Mofokeng M.M., Tesfay S., Aremu A.O., Van Staden J., Amoo S.O., 2021. Chapter 5 – Influence of plant biostimulant application on seed germination. In: Gupta S.,
- 21. Van Staden J. (Eds.), Biostimulants for crops from seed germination to plant development. Academic Press, 109–135. DOI: 10.1016/B978-0-12-823048-0.00014-9.
- 22. Menicagli V., Balestri E., Lardicci C., 2019. Exposure of coastal dune vegetation to plastic bag leachates: a neglected impact of plastic litter. Sci. Total Environ., 683, 737–748. DOI: 10.1016/j.scitotenv.2019.05.245.
- 23. Oehlmann J., Schulte-Oehlmann U., Kloas W., Jagnytsch O., Lutz I., Kusk K.O., Wollenberger L, Santos E.M., Paull G.C., Van Look K.J.W., Tyler C.R., 2009. A critical analysis of the biological impacts of plasticizers on wildlife. Phil. Trans. R. Soc. B, 364, 2047–2062. DOI: 10.1098/rstb.2008.0242.
- 24. Riboni N., Bianchi F., Cavazza A., Piergiovanni M., Mattarozzi M., Careri M., 2023. Mass spectrometry-based techniques for the detection of non-intentionally added substances in bioplastics. Separations, 10, 222. DOI: 10.3390/separations10040222.
- 25. Schiavo S., Oliviero M., Chiavarini S., Manzo S., 2020. Adverse effects of oxo- degradable plastic leachates in freshwater environment. Environ. Sci. Pollut. Res., 27, 8586–8595. DOI: 10.1007/s11356-019-07466-z.
- 26. Schrank I., Trotter B., Dummert J., Scholz-Böttcher B.M., Löder M.G.J., Laforsch C., 2019. Effects of microplastic particles and leaching additive on the life history and morphol- ogy of Daphnia magna. Environ. Pollut., 255, 113233. DOI: 10.1016/j.envpol.2019.113233.
- 27. Wang L., Peng Y., Xu Y., Zhang J., Zhang T., Yan Y, Sun H., 2022. An in situ depolymerization and liquid chromatography– tandem mass spectrometry method for quantifying polylactic acid microplastics in environmental samples. Environ. Sci. Technol., 56, 13029–13035. DOI: 10.1021/acs.est.2c02221.
- 28. Zimmermann L., Bartosova Z., Braun K., Oehlmann J., Völker C., Wagner M., 2021. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol., 55, 11814–11823. DOI: 10.1021/acs.est.1c01103
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e10b6d0-f035-49ae-894f-84ba32a1076c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.