PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface modification of fly ash spheroidal particles and their application in the adsorption of phosphorus and chromium(VI) from single and competitive solute systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work focuses on the surface modification of fly ash spheroidal particles and their application in phosphorus and chromium(VI) adsorption. The results show that through surface modification, amorphous silica-alumina gels precipitated on the spheroidal particle surface (by which the microsurface area of the reaction products is effectively enlarged) and the surface zeta potential was changed to fit for adsorbing anions. During the adsorption experiment (single and competitive solute systems), chromium(VI) was easier to adsorb. The surface zeta potential and the existence of competitive ions should be recognized as two important factors affecting adsorption efficiency. A higher temperature could improve the adsorption efficiencies of the two solute systems. The fitting results of the pseudo-second-order model (single and competitive solute systems) show better agreement than those of the pseudo-first-order model at every temperature. The Langmuir adsorption isotherm equation can better simulate the adsorption process in single solute sy039stems, but only the chromium(VI) adsorption process can be fitted by the competitive Langmuir adsorption isotherm in competitive solute systems.
Rocznik
Strony
39--59
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
autor
  • Department of City Science, Jiangsu City Vocational College, Nanjing 210036, China
autor
  • Nanjing University and Yancheng Academy of Environmental Technology and Engineering, Yancheng 224000, China
autor
  • School of Deep Blue, Jiangsu University of Science and Technology, Zhenjiang 212018, China
autor
  • School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
Bibliografia
  • [1] Environmental Protection Ministry of China, National Environmental Statistics Bulletin, 2014.
  • [2] MULLAN A., MCGRATH J.W., ADAMSON T., IRWIN S., QUINN J.P., Pilot-scale evaluation of the application of low pH-inducible polyphosphate accumulation to the biological removal of phosphate fromwastewaters, Environ. Sci. Technol., 2006, 40 (1), 296–301.
  • [3] KHEZAMI L., CAPART R., Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies, J. Hazard. Mater., 2005, 123 (1–3), 223–231.
  • [4] Ministry of Environmental Protection of the People’s Republic of China, Integrated wastewater discharge standard (GB 8978-1996), 1996.
  • [5] National Health and Family Planning Commission of the People’s Republic of China, Standards for drinking water quality (GB5749-2006), 2007.
  • [6] LANHAM A.B., OEHMEN A., SAUNDERS A.M.,CARVALHO G., NIELSEN P.H., Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal, Water Res., 2013, 47 (19), 7032–7041.
  • [7] YE Z.L., CHEN S.H., WANG S.M., LIN L.F., YAN Y.J., Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology, J. Hazard. Mater., 2010, 176 (1–3), 1083–1088.
  • [8] GHERASIM C.V., BOURCEANU G., OLARIU R.I., ARSENE C., A novel polymer inclusion membrane applied in chromium(VI) separation from aqueous solutions, J. Hazard. Mater., 2011, 197 (6), 244–253.
  • [9] KORAK J.A., HUGGINS R., ARIAS-PAIC M., Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal, Water Res., 2017, 118, 141–151.
  • [10] REN G., WANG X., HUANG P., ZHONG B., ZHANG Z., Chromium(VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction method, Sci. Total Envir., 2017, S607–608, 900–910.
  • [11] FANG H., CUI Z., HE G., HUANG L., CHEN M., Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology, Sci. Total Envir., 2017, S605–606, 357–367.
  • [12] CHEN C., GONG W., LUTZE W., PEGG I.L., Kinetics of fly ash geopolymerization, J. Mater. Sci., 2011, 46 (9), 3073–3083.
  • [13] CHEN C., GONG W., LUTZE W., PEGG I.L., ZHAI J., Kinetics of fly ash leaching in strongly alkaline solutions, J. Mater. Sci., 2010, 46 (3), 590–597.
  • [14] AND Z.L., BOWMAN R.S., Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite, Environ. Sci. Technol., 1997, 31 (8), 2407–2412.
  • [15] BAJDA T., KŁAPYTA Z., Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite, Appl. Clay Sci., 2013, 86 (3), 169–173.
  • [16] GOLESTANIFAR H., HAIBATI B., AMINI H., DEHGHANI M.H., ASADI A., Removal of hexavalent chromium( VI) from aqueous solution by adsorption on alumina nanoparticles, Environ. Prot. Eng., 2015, 41 (2), 133–145.
  • [17] ZHANG L., GAO Y., ZHOU Q., KAN J., WANG Y., High-performance removal of phosphate from water by graphene nanosheets supported lanthanum hydroxide nanoparticles, Water Air Soil Pollut., 2014, 225 (6), 1967.
  • [18] ZHANG L., WEI J., ZHAO X., LI F., JIANG F., Competitive adsorption of strontium and cobalt onto tin antimonite, Chem. Eng. J., 2016, 285, 679–689.
  • [19] SUN D., ZHANG X., WU Y., LIU X., Adsorption of anionic dyes from aqueous solution on fly ash, J. Hazard. Mater., 2010, 181 (1–3), 335–342.
  • [20] RATHORE V.K., DOHARE D.K., MONDAL P., Competitive adsorption between arsenic and fluoride from binary mixture on chemically treated laterite, J. Environ. Chem. Eng., 2016, 4 (2), 2417–2430.
  • [21] HOSSAIN M.A., NGO H.H., GUO W.S., NGHIEM L.D., HAI F.I., Competitive adsorption of metals on cabbage waste from multi-metal solutions, Bioresour. Technol., 2014, 160 (6), 79–88.
  • [22] HIDEKAZU T., SATOSHI F., ATSUSHI F., RYOZI H., TOMOKO K., Microwave assisted two-step process for rapid synthesis of Na-A zeolite from coal fly ash, Ind. Eng. Chem. Res., 2008, 47 (1), 226–230.
  • [23] SOMERSET V.S., PETRIK L.F., WHITE R.A., KLINK M.J., KEY D., Alkaline hydrothermal zeolites synthesized from high SiO2 and Al2O3 co-disposal fly ash filtrates, Fuel, 2005, 84, 2324–2329.
  • [24] EIDEN-ASSMANN S., New heavy metal-hydro-sodalites containing Cd2+, Ag+ or Pb2+: synthesis by ion exchange and characterization, Mater. Res. Bull., 2002, 37 (5), 875–889.
  • [25] WANG Y.Q., ZHANG Z.B., LI Q., LIU Y.H., Adsorption of uranium from aqueous solution using HDTMA+-pillared bentonite: isotherm, kinetic and thermodynamic aspects, J. Radioanal. Nucl. Chem., 2012, 293 (1), 231–239.
  • [26] ROUT P.R., BHUNIA P., DASH R.R., Modeling isotherms, kinetics and understanding the mechanism of phosphate adsorption onto a solid waste: ground burnt patties, J. Environ. Chem. Eng., 2014, 2 (3), 1331–1342.
  • [27] HYDER A.H.M.G., BEGUM S.A., EGIEBOR N.O., Adsorption isotherm and kinetic studies of hexavalent chromium(VI) removal from aqueous solution onto bone char, J. Environ. Chem. Eng., 2015, 3 (2), 1329–1336.
  • [28] NAMIN P.E., Adsorption of copper, cobalt, and manganese ions from aqueous solutions using oxidized multi-walled carbon nanotubes, Environ. Prot. Eng., 2016, 42, 75–85.
  • [29] KALIPCI E., Removal of methylene blue from aqueous solutions with natural olive pomace, Environ. Prot. Eng., 2016, 42 (3), 5–17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e0c9b07-0369-4684-9c8f-2416f5d2ab0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.