PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the stator current reconstruction method on direct torque control of induction motor drive in current sensor postfault operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern induction motor (IM) drives with a higher degree of safety should be equipped with fault-tolerant control (FTC) solutions. Current sensor (CS) failures constitute a serious problem in systems using vector control strategies for IMs because these methods require state variable reconstruction, which is usually based on the IM mathematical model and stator current measurement. This article presents an analysis of the operation of the direct torque control (DTC) for IM drive with stator current reconstruction after CSs damage. These reconstructed currents are used for the stator flux and electromagnetic torque estimation in the DTC with space-vector-modulation (SVM) drive. In this research complete damage to both stator CSs is assumed, and the stator current vector components in the postfault mode are reconstructed based on the DC link voltage of the voltage source inverter (VSI) and angular rotor speed measurements using the so-called virtual current sensor (VCS), based on the IM mathematical model. Numerous simulation and experimental tests results illustrate the behavior of the drive system in different operating conditions. The correctness of the stator current reconstruction is also analyzed taking into account motor parameter uncertainties, especially stator and rotor resistances, which usually are the main parameters that determine the proper operation of the stator flux and torque estimation in the DTC control structure.
Rocznik
Strony
art. no. e140099
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] M.O. Mustafa, G. Nikolakopoulos, and T. Gustafsson, “Faults Classification Scheme for Three Phase Induction Motor”, Int. J. Syst. Dyn. Appl., vol. 3, no. 1, pp. 1–20, 2014, doi: 10.4018/ijsda.2014010101.
  • [2] R. Peuget, S. Courtine, and J.P. Rognon, “Fault detection and isolation on a pwm inverter by knowledge-based model”, IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1318–1326, 1998, doi: 10.1109/28.739017.
  • [3] A. Gaeta, G. Scarcella, G. Scelba, S. De Caro, and A. Testa, “Inverter fault-identification for VSI motor drives”, in 8th IEEE Symp. Diagnostics Electr. Mach. Power Electron. Drives (SDEMPED), 2011 pp. 413–419, doi: 10.1109/DEMPED.2011.6063656.
  • [4] M.D. Kumar, “Fault Analysis For Voltage Source Inverter Driven Induction Motor Drive”, Int. J. Electr. Eng. Technol., vol. 8, no. 1, pp. 1–8, 2017.
  • [5] T. Orlowska-Kowalska and P. Sobanski, “Simple diagnostic technique of a single IGBT open-circuit faults for a SVM-VSI vector controlled induction motor drive”, Bull. Polish Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 281–288, 2015, doi: 10.1515/bpasts-2015-0032.
  • [6] M. Trabelsi, M. Boussak, and M. Gossa, “Multiple IGBTs open circuit faults diagnosis in voltage source inverter fed induction motor using modified slope method”, in 19th Int. Conf. Electr. Mach. (ICEM) 2010, pp. 1–6, doi: 10.1109/ICELMACH.2010.5608044.
  • [7] K. Rothenhagen and F.W. Fuchs, “Model-based fault detection of gain and offset faults in doubly fed induction generators”, in 2009 IEEE Int. Symp. Diagnostics Electr. Mach. Power Electron. Drives (SDEMPED), 2009, pp. 1–6, doi: 10.1109/DEMPED.2009.5292752.
  • [8] H. Berriri, M.W. Naouar, and I. Slama-Belkhodja, “Parity space approach for current sensor fault detection and isolation in electrical systems”, in Int. Multi-Conference Syst. Signals Devices (SSD) – Summ. Proc., 2011, pp. 0–6, doi: 10.1109/SSD.2011.5767496.
  • [9] A. Akrad, M. Hilairet, and D. Diallo, “Design of a fault-tolerant controller based on observers for a PMSM drive”, IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1416–1427, 2011, doi: 10.1109/TIE.2010.2050756.
  • [10] A. Ben Youssef, S.K. El Khil, and I. Slama-Belkhodja, “State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction”, IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5842–5853, 2013, doi: 10.1109/ TPEL.2013.2257862.
  • [11] H. Berriri, M.W. Naouar, and I. Slama-Belkhodja, “Easy and fast sensor fault detection and isolation algorithm for electrical drives”, IEEE Trans. Power Electron., vol. 27, no. 2, pp. 490–499, 2012, doi: 10.1109/ TPEL.2011.2140333.
  • [12] K.C. Kim, S.J. Hwang, K.Y. Sung, and Y.S. Kim, “A study on the fault diagnosis analysis of variable reluctance resolver for electric vehicle”, in Proc. IEEE Sensors, 2010 pp. 290–295, doi: 10.1109/ICSENS.2010.5689869.
  • [13] F. Zidani, M.E.H. Benbouzid, D. Diallo, and A. Benchaïb, “Active fault-tolerant control of induction motor drives in EV and HEV against sensor failures using a fuzzy decision system”, in IEEE Int. Electr. Mach. Drives Conf. (IEMDC), 2003, vol. 2, pp. 677–683, doi: 10.1109/IEMDC.2003.1210309.
  • [14] T.A. Najafabadi, F.R. Salmasi, and P. Jabehdar-Maralani, “Detection and isolation of speed-, DC-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives”, IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1662–1672, 2011, doi: 10.1109/TIE.2010.2055775.
  • [15] S. Fan and J. Zou, “Sensor Fault detection and fault tolerant control of induction motor drivers for electric vehicles”, in Conf. Proc. IEEE 7th Int. Power Electron. Motion Control Conf. (IPEMC), 2012, vol. 2, pp. 1306–1309, doi: 10.1109/IPEMC.2012.6259046.
  • [16] M. Bouakoura, N. Naăźt-Saăźd, and M.-S. Naăźt-Saăźd, “Speed Sensor Faults Diagnosis in an Induction Motor Vector Controlled Drive”, Acta Electrotech. Inform., vol. 17, no. 1, pp. 49–51, 2017, doi: 10.15546/aeei-2017-0007.
  • [17] K. Klimkowski and M. Dybkowski, “A comparative analysis of the chosen speed sensor faults detectors for induction motor drives”, in Int. Conf. Electr. Drives Power Electron. (EDPE), 2015, pp. 333–338, doi: 10.1109/EDPE.2015.7325316.
  • [18] F.R. Salmasi and T.A. Najafabadi, “An adaptive observer with online rotor and stator resistance estimation for induction motors with one phase current sensor”, IEEE Trans. Energy Convers., vol. 26, no. 3, pp. 959–966, 2011, doi: 10.1109/TEC.2011.2159007.
  • [19] Z. Gao, C. Cecati, and S.X. Ding, “A Survey of Fault Diagnosis and Fault-Tolerant Techniques – Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches”, IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3757–3767, Jun. 2015, doi: 10.1109/TIE.2015.2417501.
  • [20] Z. Gao, C. Cecati, and S. Ding, “A Survey of Fault Diagnosis and Fault-Tolerant Techniques – Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches”, IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3768–3774, 2015, doi: 10.1109/TIE.2015.2419013.
  • [21] M. Dybkowski, K. Klimkowski, and T. Orłowska-Kowalska, “Speed and current sensor fault-tolerant-control of the induction motor drive”, in Stud. Syst. Decis. Control, J. Kabzinski, Ed., Springer, Cham, 2017 vol. 75, pp. 141–167, doi: 10.1007/978-3-319-45735-2_7.
  • [22] T. Orłowska-Kowalska, C.T. Kowalski, and M. Dybkowski, “Fault-diagnosis and fault-tolerant-control in industrial processes and electrical drives”, in Stud. Syst. Decis. Control, J. Kabzinski, Ed., Springer, Cham, 2017, vol. 75, pp. 101–120, doi: 10.1007/978-3-319-45735-2_5.
  • [23] Xiaodong Shi and M. Krishnamurthy, “Survivable Operation of Induction Machine Drives With Smooth Transition Strategy for EV Applications”, IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 3, pp. 609–617, 2014, doi: 10.1109/jestpe.2014.2303488.
  • [24] M. Manohar and S. Das, “Current Sensor Fault-Tolerant Control for Direct Torque Control of Induction Motor Drive Using Flux-Linkage Observer”, IEEE Trans. Ind. Informatics, vol. 13, no. 6, pp. 2824–2833, 2017, doi: 10.1109/TII.2017.2714675.
  • [25] K.-S. Lee and J.-S. Ryu, “Instrument fault detection and compensation scheme for direct torque controlled induction motor drives”, IEE Proc. - Control Theory Appl., vol. 150, no. 4, pp. 376–382, 2003, doi: 10.1049/ip-cta:20030596.
  • [26] F.R. Salmasi, “A Self-Healing Induction Motor Drive With Model Free Sensor Tampering and Sensor Fault Detection, Isolation, and Compensation”, IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6105–6115, 2017, doi: 10.1109/TIE.2017.2682035.
  • [27] F. Aguilera, P.M. de la Barrera, C.H. De Angelo, and D.R. Espinoza Trejo, “Current-sensor fault detection and isolation for induction-motor drives using a geometric approach”, Control Eng. Pract., vol. 53, pp. 35–46, 2016, doi: 10.1016/j.conengprac.2016.04.014.
  • [28] C. Chakraborty and V. Verma, “Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation”, IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1943–1954, 2015, doi: 10.1109/TIE.2014.2345337.
  • [29] W. Wang, Y. Feng, Y. Shi, M. Cheng, W. Hua, and Z. Wang, “Fault-Tolerant Control of Primary Permanent-Magnet Linear Motors With Single Phase Current Sensor for Subway Applications”, IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10546–10556, Nov. 2019, doi: 10.1109/TPEL.2019.2899168.
  • [30] Y. Yu, Y. Zhao, B. Wang, X. Huang, and D. Xu, “Current sensor fault diagnosis and tolerant control for VSI-based induction motor drives”, IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4238–4248, 2018, doi: 10.1109/TPEL.2017.2713482.
  • [31] M. Adamczyk and T. Orlowska-Kowalska, “Virtual current sensor in the fault-tolerant field-oriented control structure of an induction motor drive”, Sensors (Switzerland), vol. 19, no. 22, 2019, doi: 10.3390/s19224979.
  • [32] Y. Azzoug, M. Sahraoui, R. Pusca, and T. Ameid, “High-performance vector control without AC phase current sensors for induction motor drives: Simulation and real-time implementation”, ISA Trans., vol. 109, pp. 295–306, 2021, doi: 10.1016/j.isatra.2020.09.021.
  • [33] M. Manohar and S. Das, “Notice of Removal: Current Sensor Fault-Tolerant Control of Induction Motor Driven Electric Vehicle Using Flux-Linkage Observer”, in 2020 IEEE Transportation Electrification Conference & Expo (ITEC), 2020, pp. 884–889, doi: 10.1109/ITEC48692.2020.9161553.
  • [34] Y. Azzoug, R. Pusca, M. Sahraoui, A. Ammar, R. Romary, and A.J. Marques Cardoso, “A Single Observer for Currents Estimation in Sensor’s Fault-Tolerant Control of Induction Motor Drives”, in 2019 International Conference on Applied Automation and Industrial Diagnostics (ICAAID), 2019, pp. 1–6, doi: 10.1109/ICAAID.2019.8934969.
  • [35] W. Wang, M. Cheng, Z. Wang, and B. Zhang, “Fast switching direct torque control using a single DC-link current sensor”, J. Power Electron., vol. 12, no. 6, pp. 895–903, 2012, doi: 10.6113/JPE.2012.12.6.895.
  • [36] B. Metidji, N. Taib, L. Baghli, T. Rekioua, and S. Bacha, “Low-cost direct torque control algorithm for induction motor without AC phase current sensors”, IEEE Trans. Power Electron., vol. 27, no. 9, pp. 4132–4139, 2012, doi: 10.1109/TPEL.2012.2190101.
  • [37] H. Kim and T.M. Jahns, “Phase Current Reconstruction for AC Motor Drives using a DC-link Single Current Sensor and Measurement Voltage Vectors”, in IEEE 36th Conference on Power Electronics Specialists (PESC), 2006, pp. 1346–1352, doi: 10.1109/PESC.2005.1581804.
  • [38] Y. Xu, H. Yan, J. Zou, B. Wang, and Y. Li, “Zero Voltage Vector Sampling Method for PMSM Three-Phase Current Reconstruction Using Single Current Sensor”, IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3797–3807, 2017, doi: 10.1109/TPEL.2016.2588141.
  • [39] M.P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics – Selected Problems, New York, USA: Academic, 2002.
  • [40] T. Orlowska-Kowalska, Sensorless Induction Motor Drives, Wrocław: Wroclaw University of Technology Press, 2003.
  • [41] M. Depenbrock, “Direct self-control (DSC) of inverter-fed induction machine”, IEEE Trans. Power Electron., vol. 3, no. 4, pp. 420–429, Oct. 1988, doi: 10.1109/63.17963.
  • [42] I. Takahashi and T. Noguchi, “A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor”, IEEE Trans. Ind. Appl., vol. IA-22, no. 5, pp. 820–827, 1986, doi: 10.1109/TIA.1986.4504799.
  • [43] G.S. Buja and M.P. Kazmierkowski, “Direct Torque Control of PWM Inverter-Fed AC Motors – A Survey”, IEEE Trans. Ind. Electron. vol. 51, no. 4, pp. 744–757, 2004, doi: 10.1109/TIE.2004.831717.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e066537-3b29-4598-97da-c783eb5c1130
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.