PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Plastic Forming During Rolling of Al1050-AZ31-Al1050 Layered Composites for Transport Purposes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to determine the possibility of producing and using layered composites made of aluminum and magnesium alloys Al1050-AZ31-Al1050. The use of layered composites often results from economic conditions. The work analyzed the current research, technological and production potential, as well as selected microstructural phenomena occurring in the tested multilayer materials and the effects of the rolling process. The material for the study was obtained using the explosion welding technology, one of the few enabling universal joining of often difficult-to-weld metals. The rolling process was carried out on a semi-industrial duo rolling mill with a roller diameter of Ø300 mm. The composite input material for the rolling process was heated to a temperature of 380°C. The effect of the rolling process on the distribution of metal pressure forces on the rolls, the geometric parameters and the microstructural changes occurring in the plastically formed layered composite were analysed, and the energy gain from using a structure in which the currently used aluminium components were replaced with the tested composite was estimated.
Twórcy
autor
  • Politechnika Częstochowska
  • Politechnika Częstochowska
  • Politechnika Częstochowska
  • Politechnika Warszawska
  • Politechnika Częstochowska
  • Politechnika Częstochowska
autor
  • Uniwersytet Jana Długosza w Częstochowie
  • Politechnika Częstochowska
Bibliografia
  • 1. Esund, J., Extrusion of 7075 aluminium alloy through double-pocket dies to manufacture a complex profile. J. Mater. Process. Technol. 2009; 209: 3050–3059. https://doi.org/10.1016/j jmatprotec.2008.07.009
  • 2. Skowrońska, B., Bober, M.; Kołodziejczak, P., Baranowski, M., Kozłowski, M., Chmielewski, T. Solid-State Rotary Friction-Welded Tungsten and Mild Steel Joints. Applied Sciences 2022; 12: 9034, https://doi.org/10.3390/ app12189034
  • 3. Hirsch, J., Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China 2014, 24(7): 1995–2002. https:// doi.org/10.1016/S1003-6326(14)63305-7
  • 4. Chuchala, D., Dobrzynski, M., Pimenov, D.Y. Orlowski, K.A., Krolczyk, G., Giasin, K., Surface Roughness Evaluation in Thin EN AW-6086-T6 Alloy Plates after Face Milling Process with Different Strategies. Materials, 2021; 14: 3036. https://doi.org/10.3390/ma14113036
  • 5. Gamin, Y., Akopyan T., Koshmin A., Dolbachev A., Aleshchenko A., Galkin S., and Romantsev B., Investigation of the microstructure evolution and properties of A1050 aluminum alloy during radial-shear rolling using FEM analysis, The Int. J. Adv. Manufact. Technol., 2020; 108: 695–704, https://doi.org/10.1007/ s00170-020-05227-8
  • 6. Sellars, C., Zhu Q., Microstructural modelling of aluminium alloys during thermomechanical processing, Mater. Sci. Eng.: A, 2000; 280(1): 1–7, https://doi.org/10.1016/S0921-5093(99)00648-6
  • 7. Li, Xianrong, Liang W., Zhao X., Zhang Y., Fu X., Liuet F. Bonding of Mg and Al with Mg–Al. eutectic alloy and its application in aluminium coating on magnesium. Journal of Alloys and Compounds, 2009; 471(1 –2): 408–411. https:// doi.org/10.1016/j.jallcom.2008.03.107
  • 8. Goni, J., Egizabal, P., Coleto, J., Mitxelena, I., Leunda, I. Guridi, J.R., High performance automotive and railway components made from novel competitive aluminium composites, Materials Science and Technology, 2003; 19(7): 931–934, https://doi.org/10.1179/026708303225004413
  • 9. Wachowski, M., Kosturek, R., Śniezek, L., Mróz, S., Stefanik, A., Szota, P. The effect of post-weld hot-rolling on the properties of explosively welded Mg/Al/Ti multilayer composite. Materials, 2020; 13(8), https://doi.org/10.3390/MA13081930
  • 10. Dyl, T., Starosta, R., Rydz, D., Koczurkiewicz, B., Kuśmierska-Matyszczak, W., The Experimental and Numerical Research for Plastic Working of Nickel Matrix Composite Coatings. Materials 2020; 13: 3177, https://doi. org/10.3390/ma13143177
  • 11. Mróz, S., Mola, R., Szota, P., Stefanik, A., Microstructure and properties of 1050A/AZ31 bimetallic bars produced by explosive cladding and subsequent groove rolling process. Archives of Civil and Mechanical Engineering. Springer: Berlin/Heidelberg, Germany, 2020. https://doi.org/10.1007/s43452-020-00084-4
  • 12. Dobatkin, S., Galkin S., Estrin Y., Serebryany V., Diez M., Martynenko N., Lukyanova E., Perezhogin V. Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. Journal of Alloys and Compounds, 2019; 774: 969–979. https://doi. org/10.1016/j.jallcom.2018.09.065
  • 13. Wójcik, Ł., Pater, Z., Bulzak, T., Tomczak, J., Lis, K., A comparative analysis of the physical modelling of two methods of balls separation. Materials 2021; 14: 7126. https://doi. org/10.3390/ma14237126
  • 14. Laber, K., Dyja, H., Rydz, D., Analytical and numerical methods of determining the distribution of temperature of air cooled strip, January/ March 2005, Metalurgija, 2004; 44(1): 31–35.
  • 15. Yu, H., Tieu, A.K., Lu, C., Godbole, A., An investigation of interface bonding of bimetallic foils by combined accumulative roll bonding and asymmetric rolling techniques. Metallurgical and Materials Transactions A, 2014; 45: 4038–4045.
  • 16. Skoblik, R., Rydz, D. and Stradomski G., Analysis of asymmetrical rolling process of multilayer plates. Solid State Phenomena. Trans Tech Publications Ltd, 2010; 165.
  • 17. Sun, X., Liu, X., Wang, J., Qi J., Analysis of asymmetrical rolling of strip considering peercentages of three regions in deformation zone. The International Journal of Advanced Manufacturing Technology, 2020; 110: 763–775.
  • 18. Stradomski, G., Rydz, D., Dyja, H. Bimetal plate St3S+Cu, Metalurgija, 2005; 44(2): 147–149.
  • 19. Prażmowski, M., Paul, H. The effect of stand-off distance on the structure and properties of zirconium—Carbon steel bimetal produced by explosion welding. Arch. Metall. Mater. 2012; 57: 1201–1210.
  • 20. Young, G. Explosion Welding, Technical Growth and Commercial History; KCI Publishing BV, Stainless Steel World: Zuthphen, The Netherlands, 2004; 6.
  • 21. Paul, H., Faryna, M., Prażmowski, M., Bański, R., Changes In The Bonding Zone of Explosively Welded Sheets. Zmiany w warstwie połączenia płyt zgrzewanych wybuchowo. Arch. Metall. Mater. 2011; 56: 463–474.
  • 22. Saravanan, S., Raghukandan, K., Thermal kinetics in explosive cladding of dis-similar metals. Sci. Technol. Weld. Join. 2012; 17: 99–103.
  • 23. Stradomski, G., Rydz, D., Garstka, T., Pałęga, M., Dyl, T., Szarek, A., Szarek, J.Ł., Dembiczak, T., Influence of asymmetric rolling process on the microstructure properties of https://doi.org/10.3390/ma15062013
  • 24. Mróz S., Mola R., Szota P., Stefanik A. Microstructure and properties of 1050A/AZ31 bimetallic bars produced by explosive cladding and subsequent groove rolling process, Archives of Civil and Mechanical Engineering, 2020; 20(3), https://doi.org/ https://doi.org/10.1007/ s43452-020-00084-4
  • 25. Skowrońska, B., Chmielewski, T., Zasada, D. Assessment of selected structural properties of high-speed friction welded joints made of unal-loyed structural steel. Materials 2022; 16: 93, https://doi.org/10.3390/ma16010093
  • 26. Skowrońska, B., Chmielewski, T., Kulczyk, M., Skiba, J., Przybysz, S., Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion. Materials 2021; 14: 1537. https://doi.org/10.3390/ma14061537
  • 27. Rydz, D., The optimal conditions for produc- tion of bimetallic plate St36K + 0H13J in asymmetrical hot rolling, Journal of Materials Processing Technology, 2004; 157–158(SPEC. ISS.): 609–612.
  • 28. Mróz, S., Wierzba, A., Stefanik, A., Szota, P., Effect of asymmetric accumulative roll-bonding process on the microstructure and strength evolution of the AA1050/AZ31/AA1050 multilayered composite materials. Materials 2020; 13: 5401. https://doi.org/10.3390/ma13235401
  • 29. Mróz S., Jagielska-Wiaderek K., Stefanik A., Szota P., Wachowski M., Kosturek R., Lipińska M., Effect of the rolling process on the properties of the Mg/Al bimetallic bars obtained by the explosive welding method. Materials 2023; 16: 21. https://doi.org/ 10.3390/ma16216971
  • 30. Tamimi, S., Sivaswamy, G., Violatos, I., Moturu, S., Rahimi, S., Blackwell, P., Modelling and experimentation of the evolution of texture In an Al-Mg alloy during earing cupping test. Procedia Eng. 2017; 207: 1–6.
  • 31. Cecchel, S., Chindamo D. Turrini E, Carnevale C., Cornacchia G, Gadola M., Panvini A., Volta M., Ferrario D., Golimbioschi R., Impact of reduced mass of light commercial vehicles on fuel consumption, CO2 emissions, air quality, and socio-economic costs. Science of The Total Environment 2018; 613–614: 409–417.
  • 32. Du, J.D., Han, W.J., Peng, Y.H., Gu, C.C., Potential for reducing GHG emissions and Energy consumption from implementing the aluminium intensive vehicle fleet in China. Energy December 2010; 35(12): 4671–4678.
  • 33. Sullivan, J.L., Lewis, G.M., Keoleian, G.M., Effect of mass on multimodal fuel consumption in moving people and freight in the U.S. Transport and Environment. Transport and Environment. 2018; 63: 786–808.
  • 34. Mozaffari, A., Hosseini, M., Manesh, H.D., Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing. Journal of Alloys and Compounds 2011; 509(41): 9938–9945.
  • 35. Golbasi O., Kina E., Haul truck fuel consumption modeling under random operating conditions: A case study. Transportation Research Part D: Transport and Environment 2022; 102: 103135.
  • 36. DuckerFrontier. 2019. Aluminum content in European passenger cars. European Aluminium. 2019. https://www.european-aluminium.eu/media/2714/ aluminum-content-in-european-cars_european- aluminium_public-summary_101019-1.pdf.
  • 37. Billy, R.G., Müller D.B., Aluminium use in pas- senger cars poses systemic challenges for recycling and GHG emissions. Resources, Conservation and Recycling 2023; 190: 106827.
  • 38. Yang, C., Lu Z., Wang, Ying, W., Li W.Y., Chen, Y., Xu, B., Energy management of hybrid electric propulsion system: Recent progress and a flying car perspective under three-dimensional transportation networks. Green Energy and Intelligent Transportation 2023; 2(1): 100061.bimetallic sheet metals. Materials 2022; 15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4e00042e-f3a1-457c-af08-a127ee220cb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.