PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of steel slag in stabilizations of expansive soil: an experimental study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was carried out to evaluate the effect of steel slag (SS) as a by-product as an additive on the geotechnical properties of expansive soil. A series of laboratory tests were conducted on natural and stabilized soils. Steel slag (SS) was added at a rate of 0, 5, 10, 15, 20, and 25% to the soil. The conducted tests are consistency limits, specific gravity, grain size analysis, modified Proctor compaction, free swell, unconfined compression strength, and California Bearing Ratio. The Atterberg limit test result shows that the liquid limit decreases from 90.8 to 65.2%, the plastic limit decreases from 60.3 to 42.5%, and the plasticity index decreases from 30.5 to 22.7% as the steel slag of 25% was added to expansive soil. With 25% steel slag content, specific gravity increases from 2.67 to 3.05. The free swell value decreased from 104.6 to 58.2%. From the Standard Proctor compaction test, maximum dry density increases from 1.504 to 1.69 g/cm3 and optimum moisture content decreases from 19.77 to 12.01 %. Unconfined compressive strength tests reveal that the addition of steel slag of 25% to expansive soil increases the unconfined compressive strength of the soil from 94.3 to 260.6 kPa. The California Bearing Ratio test also shows that the addition of steel slag by 25% increases the California Bearing ratio value from 3.64 to 6.82%. Hence, steel slag was found to be successfully improving the geotechnical properties of expansive soil.
Rocznik
Strony
105--117
Opis fizyczny
Bibliogr. 31 poz., il., tab.
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
  • Jimma University, Faculty of Civil and Environmental Engineering, Jimma, Ethiopia
Bibliografia
  • [1] P.S. Reddy, B. Mohanty, and B.H. Rao, “Influence of clay content and montmorillonite content on swelling behavior of expansive soils”, International Journal of Geosynthetics and Ground Engineering, vol. 6, art. no. 1, 2020, DOI: 10.1007/s40891-020-0186-6.
  • [2] J.-L. Zheng, R. Zhang, and H.-P. Yang, “Highway subgrade construction in expansive soil areas”, Journal of Materials in Civil Engineering, vol. 21, no. 4, pp. 154-162, 2009, DOI: 10.1061/(asce)0899-1561(2009)21:4(154).
  • [3] A.J. Puppala, T. Manosuthkij, S. Nazarian, and L.R. Hoyos, “Threshold moisture content and matric suction potentials in expansive clays prior to initiation of cracking in pavements”, Canadian Geotechnical Journal, vol. 48, no. 4, pp. 519–531, 2011, DOI: 10.1139/t10-087.
  • [4] U. Hasan and H. Nikraz, “A review of the stabilisation techniques on expansive soils”, Australian Journal of Basic and Applied Science, vol. 9, no. 7, pp. 541-548, 2015.
  • [5] C.C. Ikeagwuani and D.C. Nwonu, “Emerging trends in expansive soil stabilisation: A review”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 11, no. 2, pp. 423-440, 2019, DOI: 10.1016/j.jrmge.2018.08.013.
  • [6] D. Barman and S.K. Dash, “Stabilization of expansive soils using chemical additives: A review”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 14, no. 4, pp. 1319-1342, 2022, DOI: 10.1016/j.jrmge.2022.02.011.
  • [7] A. Soltani, A. Deng, and A. Taheri, “Swell-compression characteristics of a fiber-reinforced expansive soil”, Geotextiles and Geomembranes, vol. 46, no. 2, pp. 183-189, 2018, DOI: 10.1016/j.geotexmem.2017.11.009.
  • [8] A. Hotineanu, M. Bouasker, A. Aldaood, and M. Al-Mukhtar, “Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays”, Cold Regions Science and Technology, vol. 119, pp. 151-157, 2015, DOI: 10.1016/j.coldregions.2015.08.008.
  • [9] M. Khemissa and A. Mahamedi, “Cement and lime mixture stabilization of an expansive overconsolidated clay”, Applied Clay Scence, vol. 95, pp. 104-110, 2014, DOI: 10.1016/j.clay.2014.03.017.
  • [10] M. Olgun, “The effects and optimization of additives for expansive clays under freeze-thaw conditions”, Cold Regions Science and Technology, vol. 93, pp. 36-46, 2013, DOI: 10.1016/j.coldregions.2013.06.001.
  • [11] G. Stoltz, O. Cuisinier, and F. Masrouri, “Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil”, Applied Clay Science, vol. 61, pp. 44-51, 2012, DOI: 10.1016/j.clay.2012.04.001.
  • [12] F. Yazdandoust and S. S. Yasrobi, “Effect of cyclic wetting and drying on swelling behavior of polymerstabilized expansive clays”, Applied Clay Science, vol. 50, no. 4, pp. 461-468, 2010, DOI: 10.1016/j.clay.2010.09.006.
  • [13] L.-W. Kong, B.-C. Zhou, H. Bai, and W. Chen, “Experimental study of deformation and strength characteristics of Jingmen unsaturated expansive soil”, Rock and Soil Mechanics, vol. 31, no. 10, pp. 3036-3042, 2010.
  • [14] M. Al-Mukhtar, S. Khattab, and J.-F. Alcover, “Microstructure and geotechnical properties of limetreated expansive clayey soil”, Engineering Geology, vol. 139-140, pp. 17-27, 2012, DOI: 10.1016/j.enggeo.2012.04.004.
  • [15] W.S. Abdullah and A.M. Al-Abadi, “Cationic-electrokinetic improvement of an expansive soil”, Applied Clay Science, vol. 47, no. 3-4, pp. 343-350, 2010, DOI: 10.1016/j.clay.2009.11.046.
  • [16] F.S. Zha, S.Y. Liu, and Y.J. Du, “Experiment on improvement of expansive clays with lime-fly ash”, Journal of Southeast University (Natural Science Edition), vol. 37, no. 2, pp. 339-344, 2007.
  • [17] E. Cokca, “Use of class c fly ashes for the stabilizationof an expansive soil”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, no. 7, pp. 568-573, 2001, DOI: 10.1061/(ASCE)1090-0241(2001)127:7(568).
  • [18] W.F. Kabeta, “Study on some of the strength properties of soft clay stabilized with plastic waste strips”, Archives of Civil Engineering, vol. 68, no. 3, pp. 385-395, 2022, DOI: 10.24425/ace.2022.141892.
  • [19] M. Chen, M. Zhou, and S. Wu, “Optimization of blended mortars using steel slag sand”, Journal of Wuhan University of Technology (Materials Science), vol. 22, no. 4, pp. 741-744, 2007, DOI: 10.1007/s11595-006-4741-3.
  • [20] M. Nadeem and A.D. Pofale, “Utilization of industrial waste slag as aggregate in concrete applications by adopting Taguchi’s approach for optimization”, Open Journal of Civil Engineering, vol. 2, no. 3, pp. 96-105, 2012, DOI: 10.4236/ojce.2012.23015.
  • [21] W. Shen, M. Zhou, W. Ma, J. Hu, and Z. Cai, “Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material”, Journal of Hazardous Materials, vol. 164, no. 1, pp. 99-104, 2009, DOI: 10.1016/j.jhazmat.2008.07.125.
  • [22] Y. Huang and Z. Lin, “Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement”, Construction and Building Materials, vol. 24, no. 7, pp. 1296-1301, 2010, DOI: 10.1016/j.conbuildmat.2009.12.006.
  • [23] Z. K. Abdalqadir, N. B. Salih, and S. J. H. Salih, “Using steel slag for stabilizing clayey soil in Sulaimani City-Iraq”, Journal of Engineering, vol. 26, no. 7, pp. 145-157, 2020, DOI: 10.31026/j.eng.2020.07.10.
  • [24] Z. Abdalqadir and N. Salih, “An experimental study on stabilization of expansive soil using steel slag and crushed limestone”, Sulaimani Journal for Engineering Sciences, vol. 7, no. 1, pp. 35-46, 2020, DOI: 10.17656/sjes.10120.
  • [25] L. Wang, J. Yan, Q. Wang, B. Wang, and W. Gong, “Erratum: Dynamic shear properties of recycled waste steel slag used as a geo-backfill material (Shock and Vibration DOI: 10.1155/2019/6410362)”, Shock and Vibration, vol. 2020, art. no. 7279864, 2020, DOI: 10.1155/2020/7279864.
  • [26] Y. Liang, W. Li, and X. Wang, “Influence of water content on mechanical properties of improved clayey soil using steel slag”, Geotechnical and Geological Engineering, vol. 31, no. 1, pp. 83-91, 2013, DOI: 10.1007/s10706-012-9564-8.
  • [27] K. Patel and A. Patel, “Effects of steel slag on the strength properties of clay, lateritic and black cotton clay soil”, SAMRIDDHI-A Journal of Physical Sciences, Engineering and Technology, vol. 8, no. 2, pp. 121-126, 2016, https://www.researchgate.net/publication/315369242_Effects_of_Steel_Slag_on_the_Strength_Properties_of_Clay_Lateritic_and_Black_Cotton_Clay_Soil.
  • [28] L. Yadu and R. K. Tripathi, “Stabilization of soft soil with granulated blast furnace slag and fly ash”, International Journal of Research in Engineering and Technology, vol. 2, no. 2, pp. 115-119, 2013.
  • [29] H.D. Golakiya and C.D. Savani, “Studies on geotechnical properties of black cotton soil stabilized with furnace dust and dolomitic lime”, International Research Journal of Engineering and Technology, vol. 2, no. 8, pp. 810-823, 2015.
  • [30] H. Aldeeky and O. Al Hattamleh, “Experimental study on the utilization of fine steel slag on stabilizing high plastic subgrade soil”, Advances in Civil Engineering, vol. 2017, art. no. 9230279, 2017, DOI: 10.1155/2017/9230279.
  • [31] R.F. Legget, “American society for testing and materials”, Nature, vol. 203, no. 4945, pp. 565-568, 1964, DOI: 10.1038/203565a0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4dfb2370-d3bc-480d-9561-79c6db85b30a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.