PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical model of a composite girder with flexible adhesive bondline

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a linear elastic one-dimensional Discrete Layer–Wise (DLW) analytical model of a composite girder consisting of two beams bonded together with a layer of a flexible adhesive. The model takes into account both longitudinal and transverse deformation of component beams, the First Order Shear Deformation Theory (FSDT) for these adherends as well as extensibility of the adhesive layer. A system of governing equations is derived and a general solution is found with the use of the method of generalized eigenvectors. Two examples are analyzed both with the use of the considered 1D analytical model and a 3D Finite Element Analysis (FEA) in order to validate predictions of the introduced theory. Satisfactory agreement is found between theoretical and numerical results.
Rocznik
Strony
155--189
Opis fizyczny
Bibliogr. 71 poz., rys., tab., wykr.
Twórcy
  • Division of Structural Mechanics and Material Mechanics, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland
Bibliografia
  • 1. L.F.M. da Silva, A. Öchsner, R.D. Adams [eds.], Handbook of Adhesion Technology, Springer, Cham, 2011.
  • 2. H.M. Clearfield, D.K. McNamara, G.D. Davis, Adherend Surface Preparation for Structural Adhesive Bonding, in: L.-H. Lee [ed.], Adhesive Bonding, Springer Science+Bussiness Media New York, New York, 1991.
  • 3. G. Viana, M. Costa, L.F.M. da Silva, M.D. Banea, A review on the temperature and moisture degradation of adhesive joints, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 231, 5, 488–501, 2017.
  • 4. E.A.S. Marques, L.F.M. da Silva, M.D. Banea, R.J.C. Carbas, Adhesive joints for low- and high-temperature Use: An overview, The Journal of Adhesion, 91, 7, 556–585, 2015.
  • 5. C.B.G. Brito, R.C.M. Sales, M.V. Donadon, Effects of temperature and moisture on the fracture behaviour of composite adhesive joints, International Journal of Adhesion and Adhesives, 100, 102607, 2020.
  • 6. P. Galvez, S. Lopez de Armentia, J. Abenojar, M.A. Martinez, Effect of moisture and temperature on thermal and mechanical properties of structural polyurethane adhesive joints, Composite Structures, 247, 112443, 2020.
  • 7. F.C. Amorim, J.M.L. Reis, J.F.B. Souza, H.S. da Costa Mattos, Investigation of UV exposure in adhesively bonded single lap joints, Applied Adhesion Science, 6, 1, 2018.
  • 8. P.R. Jaiswal, N.S. Hirulkar, P.N.B. Reis, L. Papadakis, S.N. Khan, Effect of cyclic solar (UV) radiation and temperature on mechanical performance of single lap adhesive joint, 2017 ICICICT Conference, 182–189, 2017.
  • 9. G. Doyle, R.A. Pethrick, Environmental effects on the ageing of epoxy adhesive joints, International Journal of Adhesion and Adhesives, 29, 1, 77–90, 2009.
  • 10. A. Rider, E. Yeo, The Chemical Resistance of Epoxy Adhesive Joints Exposed to Aviation Fuel and its Additives, Technical Report DSTO-TR-1650 of the Defence Science and Technology Organisation, 2005.
  • 11. H.R. Gualberto, F. do Carmo Amorim, H.R.M. Costa, A review of the relationship between design factors and environmental agents regarding adhesive bonded joints, Journal of the Brazilian Society of Mechechanical Sciences and Engineering, 43, 8, 1–19, 2021.
  • 12. R.A. Pethrick, Design and ageing of adhesives for structural adhesive bonding – A review, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 229, 5, 349–379, 2015.
  • 13. V.A. Silvestru, G. Kolany, B. Freytag, J. Schneider, O. Englhardt, Adhesively bonded glass-metal façade elements with composite structural behaviour under in-plane and out-of-plane loading, Engineering Structures, 200, 109692, 2019.
  • 14. M. Bues, C. Schuler, M. Albeiz, T. Ummenhofer, H. Fricke, T. Vallée, Load bearing and failure behaviour of adhesively bonded glass-metal joints in façade structures, The Journal of Adhesion, 95, 5-7, 653–674, 2019.
  • 15. K.U. Schober, A.M. Harte, R. Kliger, R. Jockwer, Q. Xu, J.F. Chen, FRP reinforcement of timber structures, Construction and Building Materials, 97, 106–118, 2015.
  • 16. S.A. Babatunde, Review of strengthening techniques for masonry using fiber reinforced polymers, Composite Structures, 161, 246–255, 2017.
  • 17. A. Kwiecien, G. de Felice, D.V. Oliveira, B. Zajac, A. Bellini, S. De Santis, B. Ghiassi, G.P. Lignola, P.B. Lourenço, C. Mazzotti, A. Prota, Repair of composite-to-masonry bond using flexible matrix, Materials and Structures, 49, 7, 2563–2580, 2016.
  • 18. A. Kwiecien, P. Kubon, Dynamic analysis of damaged masonry building repaired with the flexible joint method, Archives of Civil Engineering, 58, 1, 39–55, 2012.
  • 19. Y.H. Mugahed Amran, R. Alyousef, R.S.M. Rashid, H. Alabduljabbar, C.C. Hung, Properties and applications of FRP in strengthening RC structures: A review, Structures, 16, 208–238, 2018.
  • 20. L.A. Modesti, A.S. de Vargas, E.L. Schneider, Repairing concrete with epoxy adhesives, International Journal of Adhesion and Adhesives, 101, 102645, 2020.
  • 21. K. Rashid, M. Ahmad, T. Ueda, J. Deng, K. Aslam, I. Nazir, M. Azam Sarwar, Experimental investigation of the bond strength between new to old concrete using different adhesive layers, Construction and Building Materials, 249, 118798, 2020.
  • 22. J.G. Broughton, A.R. Hutchinson, Adhesive systems for structural connections in timber, International Journal of Adhesion and Adhesives, 21, 3, 177–186, 2001.
  • 23. G. Tłustochowicz, E. Serrano, R. Steiger, State-of-the-art review on timber connections with glued-in steel rods, Materials and Structures, 44, 5, 997–1020, 2011.
  • 24. J. Custódio, J. Broughton, H. Cruz, A review of factors influencing the durability of structural bonded timber joints, International Journal of Adhesion and Adhesives, 29, 2, 173–185, 2009.
  • 25. M. Heshmati, R. Haghani, M. Al-Emrani, Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: State of the art, Composites Part B: Engineering, 81, 259–275, 2015.
  • 26. P. Kumar, A. Patnaik, S. Chaudhary, A review on application of structural adhesives in concrete and steel–concrete composite and factors influencing the performance of composite connections, International Journal of Adhesion and Adhesives, 77, 1–14, 2017.
  • 27. Y. Shu, X. Qiang, X. Jiang, Y. Xiao, H. Dong, Long-term performance of single-lap joints: Review, challenges and prospects in civil engineering, Engineering Reports, 1–22, 2023.
  • 28. J. Kanócz, V. Bajzecerová, Timber – concrete composite elements with various composite connections. Part 3: Adhesive connection, Wood Research, 60, 6, 939–952, 2015.
  • 29. S.-Y. Baek, Y.-J. Song, S.-H. Yu, D.-H. Kim, S.-I. Hong, Bending of CLT-concrete slabs, BioResources, 16, 4, 8227–8238, 2021.
  • 30. L. de Waal, D. Fernando, V.T. Nguyen, R. Cork, J. Foote, FRP strengthening of 60 year old pre-stressed concrete bridge deck units, Engineering Structures, 143, 346–357, 2017.
  • 31. A. Zhou, T. Keller, Joining techniques for fiber reinforced polymer composite bridge deck systems, Composite Structures, 69, 3, 336–345, 2005.
  • 32. T. Keller, H. Gürtler, Composite action and adhesive bond between fiber-reinforced polymer bridge decks and main girders, Journal of Composites for Construction, 9, 4, 360–368, 2005.
  • 33. O. Volkersen, Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten, Luftfahrtforschung, 15, 41–47, 1938.
  • 34. N.A. de Bruyne, The strength of glued joints, Aircraft Engineering, 16, 115–118, 1944.
  • 35. A. Kwiecien, Shear bond of composites-to-brick applied with highly deformable, in relation to resin epoxy, interface materials, Materials and Structures, 47, 12, 2005–2020, 2014.
  • 36. A. Kwiecien, P. Krajewski, Ł. Hojdys, M. Tekieli, M. Słonski, Flexible adhesive in composite-to-brick strengthening-experimental and numerical study, Polymers, 10, 4, 1–23, 2018.
  • 37. J.R. Cruz, J. Sena-Cruz, M. Rezazadeh, S. Serega, E. Pereira, A. Kwiecien, B. Zajac, Bond behaviour of NSM CFRP laminate strip systems in concrete using stiff and flexible adhesives, Composite Structures, 245, 1–18, 2020.
  • 38. W. Derkowski, A. Kwiecien, B. Zajac, CFRP strengthening of bent RC elements using stiff and flexible adhesives, Technical Transactions, 1-B/2013, 37–52, 2013.
  • 39. J.R. Cruz, S. Sarega, J. Sena-Cruz, E. Pereira, A. Kwiecien, B. Zajac, Flexural behaviour of NSM CFRP laminate strip systems in concrete using stiff and flexible adhesives, Composites Part B: Engineering, 195, 108042, 2020.
  • 40. S. Abrate, M. Di Sciuva, Multilayer Models for Composite and Sandwich Structures, in: P.W.R. Beaumont, C.H. Zweben [eds.], Comprehensive Composite Materials II, Elsevier, 2018.
  • 41. D. Li, Layerwise Theories of laminated composite structures and their applications: a review, Archives of Computational Methods in Engineering, 28, 2, 577–600, 2021.
  • 42. A. Tessler, M. Di Sciuva, Refinement of Timoshenko Beam Theory for Composite and Sandwich Beams Using Zigzag Kinematics, NASA Technical Publication 2007-215086, 2007.
  • 43. S. Abrate, M. Di Sciuva, Equivalent single layer theories for composite and sandwich structures: A review, Composite Structures, 179, 482–494, 2017.
  • 44. G. Schickhofer, Monographic Series TU Graz: Starrer und nachgiebiger Verbund bei geschichteten, flächenhaften Holzstrukturen, Verlag der Technischen Universität Graz, Graz, 2013.
  • 45. P. Szeptynski, Comparison and experimental verification of simplified one-dimensional linear elastic models of multilayer sandwich beams, Composite Structures, 241, 112088, 2020.
  • 46. P. Szeptynski, Closed-form analytical solution to the problem of bending of a multilayer composite beam – derivation and verification, Composite Structures, 291, 115611, 2022.
  • 47. P. Szeptynski, J. Pochopien, D. Jasinska, A. Kwiecien, The influence of the flexibility of a polymeric adhesive layer on the mechanical response of a composite reinforced concrete slab and a reinforced concrete beam girder, Polymers, 16, 444, 2024.
  • 48. P. Szeptynski, Analytical modelling of thin shear plywoodquasi-static sheared (Analityczne modelowanie cienkich sklein scinanych quasi-statycznie), Cracow University of Technology Publishing House, Kraków, 2023 [in Polish].
  • 49. P. Szeptynski, D. Jasinska, L. Mikulski, Analytical modelling and shape optimization of composite girder with adhesive bondline, Journal of Theoretical and Applied Mechanics, 62, 1, 129–142, 2024.
  • 50. M. Goland, E. Reissner, The stresses in cemented joints, Journal of Applied Mechanics, 11, A17–A27, 1944.
  • 51. F. Delale, F. Erdogan, M.N. Aydinoglu, Stresses in Adhesively Bonded Joints: a Closed-Form Solution, NASA Contractor Report 165638, 1980.
  • 52. C. Yang, S.S. Pang, Stress-strain analysis of single-lap composite joints under tension, Journal of Engineering Materials and Technology, Transactions of the ASME, 118, 2, 247–255, 1996.
  • 53. D.J. Allman, A theory for elastic stresses in adhesive bonded lap joints, Quarterly Journal of Mechanics and Applied Mathematics, 30, 4, 415–436, 1977.
  • 54. S.P. Timoshenko, J.M. Gere, Mechanics of Materials, 2nd ed., PWS-KENT Publishing Company, Boston, 1984.
  • 55. D.I. Zhuravsky, Sur la résistance d’un corps prismatique et d’une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur, Mémoires Annales des Ponts et Chaussées, 2, 328–351, 1856.
  • 56. F. Gruttmann, W. Wagner, Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections, Computational Mechanics, 27, 199–207, 2001.
  • 57. I.U. Ojalvo, H.L. Eidinoff, Bond thickness effects upon stresses in single-lap adhesive joints, AIAA Journal, 16, 3, 204–211, 1978.
  • 58. M.Y. Tsai, D.W. Oplinger, J. Morton, Improved theoretical solutions for adhesive lap joints, International Journal of Solids and Structures, 35, 12, 1163–1185, 1998.
  • 59. D.A. Bigwood, A.D. Crocombe, Elastic analysis and engineering design formulae for bonded joints, International Journals of Adhesion and Adhesives, 9, 4, 229–242, 1989.
  • 60. W.J. Renton, J.R. Vinson, Analysis of adhesively bonded joints between panels of composite materials, Journal of Applied Mechanics, 44, 1, 101–106, 1977.
  • 61. L.J. Hart-Smith, Adhesive Bonded Single-lap Joints, NASA Report: CR-112236, 1973.
  • 62. P.A. Cooper, J.W. Sawyer, Critical Examination of Stresses in an Elastic Single Lap Joint, NASA Technical Paper 1507, 1979.
  • 63. University of Oslo, Lecture notes on generalized eigenvectors for systems with repeated eigenvalues, course differential equations and optimal control theory, 1–8, 2011.
  • 64. P. Szeptynski, Corrigendum to “Closed-form analytical solution to the problem of bending of a multilayer composite beam – Derivation and verification”, Composite Structures, 299, 116028, 2022.
  • 65. I.N. Bronshtein, K.A. Semendyayev, Handbook of Mathematics, 4th Edition, Springer-Verlag, Berlin, 2004.
  • 66. European Committee for Standardisation, EN 1992-1-1:2008, Eurocode 2: Design of concrete structures, 2008.
  • 67. European Committee for Standardisation, EN 1993-1-1 – Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings, 2006.
  • 68. Sika Corporation, PRODUCT DATA SHEET Sikac CarboDurc S (Version 05.03), 2024.
  • 69. E. Hara, T. Yokozeki, H. Hatta, Y. Iwahori, T. Ishikawa, CFRP laminate out-ofplane tensile modulus determined by direct loading, Composites Part A: Applied Science and Manufacturing, 41, 10, 1538–1544, 2010.
  • 70. J. Karpiesiuk, Young’s modulus and Poisson’s ratio of polyurethane adhesive in lightweight floor system, Modern Approaches on Material Science, 2, 3, 251–255, 2020.
  • 71. D. Tsukinovsky, E. Zaretsky, I. Rutkevich, Material behavior in plane polyurethanepolyurethane impact with velocities from 10 to 400 m/sec, Journal De Physique IV, 7, C3, C3-335–C3-339, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4df849cb-317d-4594-9790-8b4735eee535
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.