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The paper presents a linear elastic one-dimensional Discrete Layer–Wise
(DLW) analytical model of a composite girder consisting of two beams bonded to-
gether with a layer of a flexible adhesive. The model takes into account both lon-
gitudinal and transverse deformation of component beams, the First Order Shear
Deformation Theory (FSDT) for these adherends as well as extensibility of the adhe-
sive layer. A system of governing equations is derived and a general solution is found
with the use of the method of generalized eigenvectors. Two examples are analyzed
both with the use of the considered 1D analytical model and a 3D Finite Element
Analysis (FEA) in order to validate predictions of the introduced theory. Satisfactory
agreement is found between theoretical and numerical results.
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1. Introduction

One of the most crucial aspects of designing of composite structures
is the problem of providing an appropriate connection between the compo-
nent parts of such a complex system. Adhesive bonding emerges as one the
most promising solutions. Adhesive bondlines have a recommendable strength-
to-weight ratio and enable joining almost any pair of materials without a ne-
cessity of drilling holes for connectors, what reduces the load-carrying capacity
of adherends. They exhibit considerable resistance against corrosion and influ-
ences of some chemically aggressive environments. Furthermore, the adhesives
themselves may protect structural elements against corrosion and may be used as
sealants. For these reasons adhesive bonding is commonly used in the automotive
and aerospace industry [1], however, most of these applications do not concern
the connection of load-carrying structural elements but rather attaching finishing
parts or elements of secondary importance. Adhesive bonding is technologically
demanding and requires skilled staff and careful preparation of joined surfaces [2].
Relatively long-lasting curation makes it also more time-consuming technology,
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compared to the use mechanical connectors, welding etc. Each adhesive has also
only a limited range of allowable service temperatures. Also moisture affects the
performance of the joint. The influence of these two factors is discussed e.g.
in [3–6]. They may also be vulnerable to the ultraviolet radiation [7, 8] and ac-
tion of certain chemicals, see e.g. [9, 10]. Adhesive joints are relatively larger
then alternative solutions, flaw detection in adhesives is difficult and there are
practically no possibilities of repairing the joint. Perhaps the most important
reason for which adhesive bonding is not so common in load-carrying structures
is that our knowledge on the long-term influence of environmental factors such
as temperature, humidity, sunlight exposure etc. is still limited, despite ongoing
research [11, 12]. The lack of unambiguous and reliable recommendations makes
it risky for designers to evaluate durability of the designed adhesive joint.

This is clearly visible in civil engineering – while there is a great variety of ad-
hesives of different properties provided by manufacturers, most of the connections
in buildings are made by ensuring locked contact (e.g. masonry, woodworking
joints), by welding, with the use of e.g. bolts, screws, dowels (steel structures) or
plate connectors, or they are simply avoided by casting a monolithic structure
(concrete structures). Adhesive joints are more commonly used in connecting fin-
ishing layers such as glass façade attached to steel substructure [13, 14]. Repair,
refurbishment and strengthening are other examples of application of adhesive
bonding, especially regarding the objects of cultural heritage. Strengthening of
timber structures with adhesively bonded Fiber Reinforced Polymers (FRP) is
discussed in [15]. A general review on the use of adhesives in strengthening
of masonry structures may be found in [16]. In [17] a technology of repair of
a debonded composite strengthening of a masonry structure is presented. The
use of flexible polymer joints for improving damping properties of a damaged
masonry structure was described in [18]. Adhesive bonding is also a common
technique of strengthening of reinforced-concrete (RC) structures [19]. It can be
also used to bond cracked concrete together [20] or to attach a new concrete
structure to the old one [21].

As regards the important load-carrying joints, it seems that only adhesively
bonded rebars and anchors are in common use in engineering practice. This con-
cerns not only RC structures, but also e.g. timber structures [22, 23]. These are
also timber structures for which building standards account for gluing technolo-
gies – this concern primarily the use of Glue Laminated Timber (GLT), Lami-
nated Veneer Lumber (LVL) or plywood considered as a structural material, but
also construction of mechanically jointed beams (EN 1995-1-1, Section B.1.2) as
well as spaced columns (Section C.3.1) and lattice columns (Section C.4) by em-
ploying adhesive joints. Requirements for phenolic and aminoplastic adhesives
used in load-carrying sections of timber structures are given in EN 301 standard,
related with EN 1995. It seems, however, that there is still a lack of standards
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dealing with a great variety of alternative adhesive types provided by manu-
facturers, based on i.e. epoxies, polyurethanes, methacrylates, cyanoacrylates.
On the other hand, building codes standardizing the construction of reinforced-
concrete (EN 1992-1-1), steel (EN 1993-1-8) and composite steel-RC structures
(EN 1994-2) do not support design of adhesive joints. It is also beyond the scope
of the technical specification CEN/TS 19103 dealing with composite timber-
concrete structures.

Nevertheless, adhesive bonding in civil engineering is still a subject of an
intense ongoing research [24–27]. In particular, this technology may find multi-
ple applications in the construction of composite structures such as multilayer
beams, girders or bridge decks. At present, due to the lack of appropriate build-
ing standards, a regular approach is to use stiff mechanical connectors, ensuring
complete transmission of displacement between components of the composite el-
ement (see Fig. 1). However, employing an adhesive layer as a connector gains
popularity, especially when FRP decks are utilized [28–32]. One of the reasons
for that is that a surface adhesive bonding enable distribution of stresses over
a wider area, as opposed to local concentration of stresses in the neighborhood
of connectors. Thin layers of stiff (e.g. epoxy) adhesive provide a rigid connection
resulting in similar characteristic of a composite cross-section as in the case of the
use of mechanical connectors. However, such stiff adhesives tend to concentrate
stress near the ends of a bondline, as it is predicted even by the simplest theo-
ries of Volkersen and de Bruyne [33, 34] and supported by the experimental evi-
dence [35, 36]. Contrary to that, employing more compliant (flexible, extensible)
connection in the form of a relatively thick layer of an adhesive of low stiffness
results in more uniform stress distribution along a bondline [35–37], however,
also a significant relative horizontal displacement of components occurs due to
shearing of an adhesive layer (Fig. 1). While such a solution apparently may lead
to the loss of flexural rigidity of a composite structure, such a conclusion is not

Fig. 1. Strain distribution in a composite cross-section depending on the rigidity of
connection between components.
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always true [38]. It was shown in [39] that the use of the flexible adhesive pro-
vides a residual load-carrying capacity of a cracked RC slab up to 40% greater
than the one obtained with the use of the stiff adhesive.

There are multiple mathematical models of composite or multilayer beams,
which may be employed for the description of deformation and stress distribution
in composite beams and plates. These include the Discrete Layer–Wise (DLW)
theories [40, 41] (including zig-zag models [42]) as well as Equivalent Single
Layer (ESL) theories [43]. A proposition of an analytical model, closely related
to a more general theory presented in [44], was introduced in [45, 46]. This model
– based on assumptions of the linear theory of elasticity – deals with multilayer
beams consisting of bent layers and sheared adhesive layers placed in an alter-
nating way. Each of the bent layers is considered the Bernoulli–Euler beam and
it is assumed that the sheared layer undergoes only simple shear, determined
by displacements of the neighboring bent layer at interface with an adhesive.
The discussed model emerges to be in good agreement both with experimen-
tal results [45] and simulations performed with the use of the Finite Element
Method (FEM) [45–47]. Also analytical formulas were derived for maximal de-
flection, extremal normal stresses in bent layers and extremal shear stress in an
adhesive layer [47, 48]. Recently, the model have been employed in a control
theory problem optimizing a shape of a composite bridge girder [49]. The major
drawback of the presented theory is neglecting the extensibility (longitudinal
deformation) of the adhesive layers. In [48] predictions of a number of distinct
theories describing the stress distribution in sheared single-lap joint [50–53] were
compared with the results of the Finite Element Analysis (FEA). It was shown
that accounting for extensibility of an adhesive layer – as in the proposition of
Delale, Erdogan and Aydınoglu [51] – is crucial for a correct description of dis-
tribution of the peel stress, which is one of the leading factors determining the
strength of a joint (see Fig. 2).

For this reason in the current research an attempt is made to generalize the
model presented in [45, 46], so that it accounted for longitudinal deformation of
an adhesive layer. Also the First Order Shear Deformation Theory (FSDT) is
employed by modelling the bent layers within the Timoshenko–Ehrenfest beam
theory [54]. Three-layer girders (top beam + adhesive layer + bottom beam)
are considered only, since the research is meant to contribute to the problem of
modelling of adhesively bonded composite girders and bridge decks. The most
important goals achieved in the research and presented in the article are given
below:
• A system of governing equations for the problem of plane bending of a com-

posite girder with a flexible adhesive bondline is derived.
• An analytical solution to the problem is found with the use of the method

of generalized eigenvectors. A general solution is found as a sum of a gen-
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Fig. 2. Peel stress distribution in an adhesive layer in a sheared single-lap joint [48].

eral solution of a homogeneous system of equations and chosen particular
solution of a non-homogeneous system. Closed-form formulas are derived
for the vectors determining these solutions.
• Two numerical examples are analyzed to validate the theoretical predic-

tions with the results of the FEA. In the first one, a symmetric simply-
supported composite RC-steel bridge deck subject to self-weight and uni-
formly distributed load is considered. In the second example, a simply-
supported RC beam strengthened with an adhesively bonded CFRP film
subject to four-point bending is analyzed.

2. Model assumptions and derivation of governing equations

We shall deal with a composite girder consisting of two beams bonded to-
gether with a layer of a flexible adhesive, as shown in Fig. 3.

The picture shows a typical RC-steel composite girder, however, the presented
theory may be applied to any geometry and materials which satisfy the following
assumptions:
• The model falls within the framework of the linear theory of elasticity,

therefore it is assumed that:
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Fig. 3. Composite girder.

– displacements are small – no second order effects, such as P − δ or
P −∆ effects, are accounted for,

– strains are small – the kinematic relations between strains and deriva-
tives of displacements are linear,

– the material is linear elastic – for each of the materials, the consti-
tutive relation between strains and stresses take the form of linear
Hooke’s law.

• The beam is only in-plane loaded and only in-plane deformation is consid-
ered – out-of-plane buckling or lateral torsional buckling are beyond the
scope of the presented theory.
• The beams are slender enough so that their deformation may be properly

described with the use of the Timoshenko–Ehrenfest beam theory (Fig. 4).
• The beams exhibit significantly greater longitudinal and transverse rigidity

than the adhesive. Under such an assumption it is possible to determine
an approximate plane strain state in the adhesive according solely to dis-
placements of the neighboring beams at interfaces with the adhesive layer.

Fig. 4. State variables.

A procedure of derivation of governing equations is analogous to those ap-
plied in most of analytical models dealing with adhesively bonded elements,
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particularly these presented in [45, 52], where the equations are formulated in
terms of generalized displacements and their derivatives. Equations of equilib-
rium of cross-sectional forces (defined as components of resultant force and re-
sultant moment of a continuous distribution of stresses in a given cross-section)
are written down for each of two component beams. Then constitutive relations
are employed in order to express the cross-sectional forces in terms of strains
and finally kinematic relations are utilized, so that only displacements and their
derivatives occur in the final form of equilibrium equations.

2.1. Kinematic relations

Kinematics of beams, according the Timoshenko–Ehrenfest (TE) beam the-
ory, is governed by the assumption that any plane cross-section of an undeformed
beam remains plane also after deformation, however, it may undergo a rotation
by angle φ about an axis parallel to the direction of the bending moment vector.
Vertical displacements of points belonging to the given cross-section of the i-th
beam are considered constant across the entire cross-section and equal wi(x)
(i = 1, 2). Combining the assumptions of the TE theory with a possibility of
longitudinal deformation of the beam, horizontal displacement of point (x, z) of
the i-th beam may be expressed as follows:

(2.1) uzi (x, zi) = ui(x)− φi(x) · zi (i = 1, 2),

where ui is the horizontal displacement of the centroid of the beam’s cross-
section, while φi stands for the angle of rotation of this cross-section. The hori-
zontal displacement of the bottom face of the top beam

(
z1 = h1

2

)
is thus equal

(B in the superscript stands for the “bottom face”):

(2.2) uB1 = u1 − φ1 ·
h1

2
,

while the horizontal displacement of the top face of the bottom beam
(
z2 = −h2

2

)
may be expressed in the following way (T in the superscript stands for the “top
face”):

(2.3) uT2 = u2 + φ2 ·
h2

2
.

One may notice, that the above relations assume that both beams’ sections
are symmetrical about horizontal axis, as the distance from the centroid is half
the height of the section. This assumption, however, is not necessary – in case
of any non-symmetric section, it is enough to substitute in the place of hi twice
the distance between the centroid and the interface with the bondline.
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Strains in beams are calculated according to the linear kinematic relations:

εxx,i =
duzi
dx

=
dui
dx
− dφi
dx
· zi (i = 1, 2),(2.4)

εxz,i =
1

2

(
duzi
dzi

+
dwi
dx

)
=

1

2

(
dwi
dx
− φi

)
(i = 1, 2).(2.5)

The longitudinal strain in the adhesive is assumed to be equal an average of the
strains at interfaces:

(2.6) εxx,a =
1

2

(
duB1
dx

+
duT2
dx

)
=

1

2

[(
du1

dx
+
du2

dx

)
+

(
dφ2

dx
· h2

2
− dφ1

dx
· h1

2

)]
.

Please, note that this is only an approximation, since a plane deformation
with unequal elongations at interfaces of the adhesive necessarily yields a non-
uniform through-the-thickness distribution of εxx,a. The value given by (2.6) is
a mean value of the considered strain in the given cross-section. Vertical displace-
ments in the adhesive are assumed to vary linearly through the thickness, so the
corresponding transverse linear strain is constant in the given cross-section:

(2.7) εzz,a =
w2 − w1

t
,

where t stands for the thickness of the adhesive layer. Similarly, it is assumed
that the horizontal displacement varies linearly between the values at interfaces
which are determined by the deformation of neighboring beams. For this reason
the shear strain in the adhesive is also considered constant in the given cross-
section:

(2.8) εxz,a =
uT2 − uB1

2t
=

1

2t

[
(u2 − u1) +

(
φ2 ·

h2

2
+ φ1 ·

h1

2

)]
.

2.2. Constitutive relations

Linear constitutive relations of generalized Hooke’s law are employed for each
component material. Stress state components in the beams are equal:

(2.9)
σxx,i = Eiεxx,i = Ei

(
dui
dx
− dφi
dx
· zi
)
,

σxz,i = 2Giεxz,i = Gi

(
dwi
dx
− φi

)
(i = 1, 2),

where Ei and Gi are Young’s longitudinal stiffness modulus, and Kirchhoff’s
modulus of rigidity, respectively, for a material that the i-th beam is made of.
Please, note that according to (2.9) the distribution of shear stress is uniform
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over the beams’ cross-sections, which contradicts the static boundary conditions
requiring them to be zero at outer faces. As it is known that the true distribution
of shear stress is non-uniform, it is necessary to introduce a shear correction
factor κi which would yield correct value of the definite integral determining the
resultant shear force. After appropriate integration of stresses over the considered
cross-sections:

(2.10) Ni =

∫∫
Ai

σxx,i dA, Qi =

∫∫
Ai

κiσxz,i dA, Mi =

∫∫
Ai

σxx,izi dA (i = 1, 2),

the constitutive relations between cross-sectional forces and displacements may
be written in the following way:

(2.11) Ni = EiAi
dui
dx

, Qi = κiGiAi

(
dwi
dx
− φi

)
, Mi = −EiIi

dφi
dx

(i = 1, 2),

where Ni, Qi, Mi stand for axial force, transverse shear force and bending mo-
ment, respectively, while Ai and Ii are the area of the cross-section and second
moment of area of the cross-section of the i-th beam, respectively. The use of the
Zhuravsky formula [55] enables simple estimation of the shear correction factor
in the following form:

(2.12) κi =
1

fs,i
=

[
Ai
I2
i

∫∫
Ai

S2
i (zi)

b2i (zi)
dA

]−1

,

where fs,i is the form factor, bi(zi) is the width of the cross-section at coordinate
zi and Si(zi) is the first moment of area about the central horizontal axis of
this part of cross-section which is placed beyond zi line. For I-sections and box-
sections an approximation κi = Aweb,i/Ai may be used [54]. For an arbitrary
cross-section the shear correction factor may be determined numerically [56].

As regards the distribution of shear stress in the component beams, the for-
mula (2.9) is far from being precise. Much more accurate estimate may be pro-
vided by the aforementioned Zhuravsky formula, according to which, the mean
(through-the-width) shear stress is equal

(2.13) σxz,i(x, zi) =
1

bi(zi)

∫∫
Ai(zi)

∂σBxx,i
∂x

dA = − Ei
bi(zi)

∫∫
Ai(zi)

d2φi
dx2

· zi dA,

where Ai(zi) is a part of the cross-section which is placed beyond a zi line
and σBxx,i stands for normal stress due to bending only (normal stresses due
to axial forces, even distributed nonuniformly along x axis, are still distributed
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uniformly over the cross-section and thus do not produce distortional strain and
corresponding shear stress). The area Ai(zi) should be chosen in such a way,
that its outer edge corresponds with the traction free boundary, e.g. for i = 1
(top beam) the integration should be performed for Ai(zi) placed above the cen-
troid, otherwise the integration should account for an additional boundary term
corresponding with the interface with the bondline, namely, the magnitude of
shear stress in the adhesive layer. Similarly, for i = 2 (bottom beam) integration
should be performed for Ai(zi) placed below the centroid.

The adhesive is assumed to be in the plane strain state, so the constitutive
relation may be written in the form presented below:

σxx,a = Ma

[
εxx,a +

νa
1− νa

εzz,a

]
,(2.14)

σzz,a = p = Ma

[
εzz,a +

νa
1− νa

εxx,a

]
,(2.15)

σxz,a = τ = 2Gaεxz,a,(2.16)

where Ma is the P-wave modulus of the adhesive, νa is its Poisson’s ratio and
Ga stands for modulus of rigidity. These three constants are not independent, as
they are bound by the following relation:

(2.17) Ma = 2Ga
1− νa
1− 2νa

.

It is also possible to define the cross-sectional forces for a composite section.
Bending moment about an axis parallel to Y -axis and corresponding with a fixed
ZO coordinate is equal:

MO = M1 +M2 +N1(ZO,1 − ZO) +N2(ZO,2 − ZO)

(2.18)

= −E1I1
dφ1

dx
− E2I2

dφ2

dx
+ E1A1

du1

dx
(ZO,1 − ZO) + E2A2

du2

dx
(ZO,2 − ZO),

where ZO,i denotes the global coordinate of the centroid of the cross-section
of the i-th beam. For beams of the symmetric cross-section, one should take
ZO,1 = h1

2 , ZO,2 = h1 + t + h2
2 . The shear force may be found according to

Schwedler’s formula:

Q =
dMO

dx
=
dM1

dx
+
dM2

dx
+
dN1

dx
ZO,1 +

dN2

dx
ZO,2(2.19)

= −E1I1
d2φ1

dx2
− E2I2

d2φ2

dx2
+ E1A1

d2u1

dx2
ZO,1 + E2A2

d2u2

dx2
ZO,2.
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Please, note that the above result is independent of the choice of ZO. The
remaining term including ZO cancels since the sum of derivatives of axial forces
is null, according to the equations of equilibrium, as it is shown in the following
section.

2.3. Equilibrium equations

Equilibrium of forces and moment of forces applied to infinitesimal sections
of components of the considered composite girder is depicted in Fig. 5.

Fig. 5. Equilibrium of external and internal forces applied to a section of a composite girder.

According to this picture, one may write the following equilibrium equations
for beams’ sections:

dN1

dx
+bτ = 0,

dQ1

dx
+bp+(b1q+γ1A1) = 0,

dM1

dx
−Q1+τ · bh1

2
= 0,(2.20)

dN2

dx
−bτ = 0,

dQ2

dx
−bp+γ2A2 = 0,

dM2

dx
−Q2+τ · bh2

2
= 0,(2.21)

where γi is the self-weight of the material that the i-th beam is made of. It
is assumed that the shear stress due to shearing of the adhesive acts at the
interface, just as it was assumed in e.g. [50, 52, 57–60], contrary to an alternative
approach, presented e.g. in [61, 62], in which it was assumed that shear stress
is reduced in the middle of the adhesive layer’s thickness. After expressing the
cross-sectional forces according to (2.11) and substituting (2.6)–(2.8) together
with (2.14)–(2.16) we arrive at the following result:
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(2.22) E1A1
d2u1

dx2
+ b

Ga
t

[
(u2 − u1) +

(
φ2 ·

h2

2
+ φ1 ·

h1

2

)]
= 0,

E2A2
d2u2

dx2
− bGa

t

[
(u2 − u1) +

(
φ2 ·

h2

2
+ φ1 ·

h1

2

)]
= 0,

κ1G1A1

(
d2w1

dx2
− dφ1

dx

)
+ bMa

[
w2 − w1

t
+

νa
2(1− νa)

[(
du1

dx
+
du2

dx

)
+

(
dφ2

dx
· h2

2
− dφ1

dx
· h1

2

)]]
+ (b1q + γ1A1) = 0,

κ2G2A2

(
d2w2

dx2
− dφ2

dx

)
−bMa

[
w2 − w1

t
+

νa
2(1− νa)

[(
du1

dx
+
du2

dx

)
+

(
dφ2

dx
·h2

2
− dφ1

dx
·h1

2

)]]
+γ2A2 = 0,

E1I1
d2φ1

dx2
+κ1G1A1

(
dw1

dx
−φ1

)
− bh1

2

Ga
t

[
(u2−u1)+

(
φ2 ·

h2

2
+φ1 ·

h1

2

)]
= 0,

E2I2
d2φ2

dx2
+κ2G2A2

(
dw2

dx
−φ2

)
− bh2

2

Ga
t

[
(u2−u1)+

(
φ2 ·

h2

2
+φ1 ·

h1

2

)]
= 0.

This is a linear non-homogeneous system of 6 ordinary differential equations
(ODEs) of the 2nd order with constant coefficients. It is important to note that
the above equilibrium conditions regard the beams only. Local equilibrium in
the adhesive is not satisfied, unless:

(2.23)


∂σxx,a
∂x

+
∂σxz,a
∂z

= 0,

∂σxz,a
∂x

+
∂σzz,a
∂z

+ gabt = 0,

which gives us:

(2.24)



1

2

[(
d2u1

dx2
+
d2u2

dx2

)
+

(
d2φ2

dx2
· h2

2
− d2φ1

dx2
· h1

2

)]
+

νa
1− νa

1

t

(
dw2

dx
− dw1

dx

)
= 0,

Ga
t

[(
du2

dx
− du1

dx

)
+

(
dφ2

dx
· h2

2
+
dφ1

dx
· h1

2

)]
+ gabt = 0.

The above equations are not employed in the system of governing equations.
Neglecting the equilibrium of stresses in the adhesive layer may be the source of
errors in the description of deformation of the adhesive layer, so the distribution
of stresses in adhesive should be considered as an approximate one.
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The system (2.22) may be written in a much more compact form after intro-
ducing non-dimensional variables (please, note that φi (i = 1, 2) are dimension-
less quantities themselves):

(2.25) ξ =
x

L
, υ1 =

u1

L
, υ2 =

u2

L
, ω1 =

w1

L
, ω2 =

w2

L
,

and non-dimensional similarity numbers:

(2.26)

πh1 =
h1

2L
, πh2 =

h2

2L
, πt =

2L

t
, πν =

νa
1− νa

,

πq1(ξ) =
(q(ξ)b1 + γ1A1g1)L

κ1G1A1
, πq2 =

γ2A2g2L

κ2G2A2
,

πN1 =
GaL

2b

E1A1t
, πQ1 =

κ1G1A1L
2

E1I1
,

πM1 =
GaL

3bh1

2E1I1t
, πa1 =

MaLb

2κ1G1A1
,

πN2 =
GaL

2b

E2A2t
, πQ2 =

κ2G2A2L
2

E2I2
,

πM2 =
GaL

3bh2

2E2I2t
, πa2 =

MaLb

2κ2G2A2
,

where the characteristic length of the problem L maybe chosen in an arbitrary
way, e.g. as the girder’s spanlength. All these similarity numbers are positive.
Then the system (2.22) may be transformed into a linear non-homogeneous sys-
tem of 12 ODEs of the 1st order with constant coefficients, which may be written
down in the following matrix form:

(2.27) y′(ξ) = Ay(ξ) + B(ξ),

where

A =

0 1 0 0 0 0 0 0 0 0 0 0

πN1 0 −πN1πh1 0 0 0 −πN1 0 −πN1πh2 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

−πM1 0 πM1πh1 + πQ1 0 0 −πQ1 πM1 0 πM1πh2 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 −πa1πn 0 πa1πh1πn + 1 πa1πt 0 0 −πa1πn 0 −πa1πh2πn −πa1πt 0

0 0 0 0 0 0 0 1 0 0 0 0

−πN2 0 πN2πh1 0 0 0 πN2 0 πN2πh2 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

−πM2 0 πM2πh1 0 0 0 πM2 0 πM2πh2 + πQ2 0 0 −πQ2

0 0 0 0 0 0 0 0 0 0 0 1

0 πa2πn 0 −πa2πh1πn −πa2πt 0 0 πa2πn 0 πa2πh2πn + 1 πa2πt 0



,
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B(ξ) = [0, 0, 0, 0, 0,−πq1(ξ), 0, 0, 0, 0, 0,−πq2(ξ)]T ,

y(ξ) =

[
υ1,

dυ1

dξ
, φ1,

dφ1

dξ
ω1,

dω1

dξ
, υ2,

dυ2

dξ
, φ2,

dφ2

dξ
ω2,

dω2

dξ

]T
.

Since the considered system of equations is linear, its general solution will
be a sum of a general solution of a homogeneous system yH and any particular
solution of an non-homogeneous system yN :

(2.28) y = yH + yN .

3. Closed-form analytical solution of the system of governing equations

3.1. Generalized eigenvectors

The matrix of coefficients A in (2.27) is a non-diagonalizable matrix. Geomet-
ric multiplicity of some of its eigenvalues is less than their algebraic multiplicity,
which means that there are less linearly independent eigenvectors corresponding
with repeated eigenvalues than the multiplicity of this eigenvalues as a root of
a characteristic polynomial. As a result the set of regular eigenvectors only is not
large enough to form a fundamental solution, namely a basis of a vector space
of solutions to this system. Such problems may be solved with the use of the
method of generalized eigenvectors [46, 63, 64].

It may be checked that λ1 = 0 is a repeated eigenvalue of A of algebraic
multiplicity k1 = 6, however, there are only m1 = 2 linearly independent eigen-
vectors corresponding with λ1:

(3.1)
v1,1,1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]T ,

v1,2,1 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]T .

An indeterminate system of equations for components of a generalized eigen-
vector v is considered:

(3.2) (A− λ1I)k1−m1+1v = 0,

where I is a 12 × 12 unit matrix. Within a six-parameter family of solutions of
the above system, two linearly independent solutions were found – a generalized
eigenvector v1,1,2 of rank r1 = 2, and a generalized eigenvector v1,2,4 of rank
r2 = 4 such that:

(3.3) (A− λiI)rj−1vk,j,rj 6= 0 ∧ (A− λiI)rjvk,j,rj = 0.

The two found vectors generate two linearly independent chains of generalized
eigenvectors according to the general formula:

(3.4) vk,j,s = (A− λiI)rj−svk,j,rj (k = 1, j = 1, 2, s = 1, . . . , rj).
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A collection of the generalized eigenvectors of A is then as follows:

(3.5) E =


(

v1,1,1

v1,1,2

) 
v1,2,1

v1,2,2

v1,2,3

v1,2,4


 ,

where the chains of the generalized eigenvectors may be expressed in the following
way (

y1 = v1,1,1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]T

y2 = v1,1,2 = [0, 1, 0, 0, α0, 0, 0, 1, 0, 0, 0, 0]T

)
,(3.6)


y3 = v1,2,1 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]T

y4 = v1,2,2 = [α1, 0, 1, 0, 0, 1, α2, 0, 1, 0, 0, 1]T

y5 = v1,2,3 = [0, α1, 0, 1, α3, 0, 0, α2, 0, 1, α4, 0]T

y6 = v1,2,4 = [α5 0 α6 0 0 α3 0 0 −α6 0 0 α4]T

 ,(3.7)

where

α0 =
2πν
πt

, α1 = πN1
βh1

βN
, α2 = −πN2

βh1

βN
,

α3 = −β1 + β3, α4 = −β1 − β3, α5 = −β4 − β5, α6 = β2 + β3,

β1 =
βSβh1 + βNβQ

2πQ1πQ2βN
, β2 =

βTβh1 + βNβR
2πQ1πQ2βN

, β3 =
πνβM
πtβN

,

β4 =
βTβh4 + βNβRβh2 − 2πQ1πQ2βh1

2πQ1πQ2βN
, β5 =

πνβh2βM
πtβN

,

βS = πM1πQ2 + πM2πQ1, βT = πM1πQ2 − πM2πQ1,

βM = πN1πh2 − πN2πh1, βN = πN1 + πN2,

βQ = πQ1 + πQ2, βR = πQ2 − πQ1,

βh1 = πh1 + πh2, βh2 = πh2 − πh1,

βh3 = π2
h1 + π2

h2, βh4 = π2
h2 − π2

h1.

Total number of generalized eigenvectors stored in the collection E is 6, which
is equal to k1 – this means that the considered collection is complete.

The rest of eigenvalues λ of matrix A may be found as the non-zero roots
of a characteristic polynomial det(A − λI) = 0. This is an even polynomial of
degree 6 of the following form:

(3.8) e(λ) = λ6 + J4λ
4 + J2λ

2 + J0 = 0,
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where

J0 = −βPπt,
βP = βh1(πM1πQ2πa2 + πM2πQ1πa1) + βN (πQ1πa1 + πQ2πa2),

J2 = πt((πa1 + πa2)(πh1πM1 + πh2πM2 + βN ) + (πQ1πa1 + πQ2πa2))

− 2πν(πh1πh2(πM1πQ2πa2 + πM2πQ1πa1)

+ (πh1πQ1πa1πN2 + πh2πQ2πa2πN1)),

J4 = πν(πh1πQ1πa1 + πh2πQ2πa2)− πt(πa1 + πa2)− (πh1πM1 + πh2πM2)− βN .

After substituting X = λ2 the equation becomes cubic and its roots may be
found with the use of any of classical methods [65]. Cubic equations may have
either three real roots or one real and two complex conjugate roots. A simplified
numerical analysis indicates that within the range of most commonly used values
of similarity numbers, occurrence of either of these two cases depends primarily
on the stiffness of the adhesive layer. For flexible bondline (compliant material,
relatively large thickness of the adhesive layer) there are usually 2 real opposite
eigenvalues and four eigenvalues which are square roots of two complex conjugate
numbers; for stiff adhesives and thin adhesive layers there are usually 6 real
pairwise opposite roots. One should be aware, however, that these observations
may fail for a particular set of similarity numbers as other root configurations are
also possible – while for any positive similarity numbers J0 is always negative,
no unambiguous conclusion may be derived from this assumption as regards the
remaining two coefficients. As a result any combination of real and complex,
positive or negative roots is possible for the cubic equation and thus multiple
possible sets of real and complex roots may occur for the original sextic equation.

Once the eigenvalue is determined, the corresponding eigenvector may be
determined as a solution of an indeterminate system of linear equations after
assuming any fixed (non-zero) value of a number of unknown components of
this vector – this number, according to the Kronecker–Capelli theorem, is equal
the difference between the number of components of the vector and the rank
of matrix of coefficients of the considered system of equations. An analytical
closed-form expressions may be found for the components of the eigenvectors
corresponding with non-zero eigenvalues, they are, however, rather lengthy and
cumbersome.

3.2. General solution of a homogeneous system

The part of the general solution of the homogeneous system

(3.9) y′H(ξ) = AyH(ξ),

corresponding with the repeated eigenvalue λ1 = 0 may be written in the fol-
lowing form:
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yH,1(ξ) = C1y1 + C2(ξy1 + y2) + C3y3 + C4(ξy3 + y4)(3.10)

+ C5

(
ξ2

2
y3 + ξy4 + y5

)
+ C6

(
ξ3

6
y3 +

ξ2

2
y4 + ξy5 + y6

)
.

The form of the remaining part of the general solution depends on whether
the eigenvalue corresponding with a basis solution is real or complex. For real
eigenvalues λk and related eigenvectors vk the corresponding solution is equal:

(3.11) yH,k(ξ) = eλkξvk,

while in the case of a pair of conjugate complex eigenvalues λk = ρk + i · θk and
λk+1 = λk = ρk − i · θk and related eigenvectors vk and vk+1 = vk we have:

yH,k(ξ) = eρkξ[Ck(cos(θkξ) ·R(vk)− sin(θkξ) · I(vk))(3.12)
+ Ck+1(cos(θkξ) · I(vk) + sin(θkξ) ·R(vk))].

Constants of integration Ck (k = 1, . . . , 12) should be determined according
to the prescribed boundary conditions describing either the kinematic constraints
imposed on displacements of the girder or static loads applied to the end cross-
sections or compatibility and equilibrium conditions in cross-sections loaded in
a pointwise manner.

3.3. Particular solution of a non-homogeneous system

If the vector B(ξ) 6= 0, the system becomes non-homogeneous. Non-zero B
corresponds with external load applied to the beam in the form of body forces or
distributed surface tractions given by the function q(x) [N/m2]. One of the most
common case of external load is the uniformly distributed load (UDL) given by
q(x) = q = const. It corresponds also with a uniformly distributed self-weight.
Such a function is a specific case of a quasi-polynomial function:

(3.13) B(ξ) = eηξ ·
K∑
i=0

Biξ
i.

For UDL we have η = 0 and K = 0. A particular solution to the non-
homogeneous problem is also expected in the form of a quasi-polynomial func-
tion:

(3.14) yN (ξ) = eηξ ·
L∑
i=0

Diξ
i.

If the exponent η is distinct from eigenvalues of A, then the degree L is
expected to be equal to K. Otherwise, it needs to be augmented with the length
of the longest Jordan chain, which in our case is equal to 4 (see: Eq. 3.5). In
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the case of UDL we have η = λ1 = 0, so L = K + 4 = 4. We shall consider
two cases corresponding with similarity numbers πq1 and πq2, which – due to
linearity of the system – may be superimposed. In both cases the general form of
the particular solution depending on 30 unknown coefficients ai,j (i = 1, . . . , 6;
j = 0, . . . , 4) is assumed as follows:

(3.15) yN =

[yN,1, yN,2, yN,3, yN,4, yN,5, yN,6, yN,7, yN,8, yN,9, yN,10, yN,11, yN,12]T ,

where

yN,(2i−1) = ai,0+ai,1ξ+ai,2ξ
2+ai,3ξ

3+ai,4ξ
4, yN,2i =

d

dξ
yN,(2i−1), i = 1, . . . , 6.

After substituting (3.15) in (2.27) we obtain an indeterminate linear system
of equations for coefficients ai,j . A six-parameter family of solutions may be
found. Any particular solution may be taken in order to construct a general
solution of (2.27).

Case 1. πq1 6= 0 and πq2 = 0 (surface tractions applied to the top beam
and/or self-weight of the top beam). Non-zero coefficients are given by the fol-
lowing relationships:

a1,3

πN1
= − a4,3

πN2
=

πq1
6βP

(πQ1πQ2πa2βh1),

a2,3 = a5,3 = 4a3,4 = 4a6,4 =
πq1
6βP

(πQ1πQ2πa2βN ),

a3,2 = − πq1
2βP

(πQ2πa2(πM1βh1 + βN )),

a4,1 =
πq1πa2

πtβP
[πt(πh2(βTβh1 + βNβR)− πQ1πQ2βh1) + 2πνπQ1πQ2πh2βM ],

a5,1 = −πq1πa2

πtβP
[πt(βTβh1 + βNβR) + 2πνπQ1πQ2βM ],

a6,0 =
πq1πQ1

πtβP
[βh1(πνπQ2πa2 − πM2)− βN ],

a6,2 = −πq1πa2

2πtβP
[πtπQ2(πM1βh1 + βN ) + 2πνπQ1πQ2βM ].

Case 2. πq1 = 0 and πq2 6= 0 (self-weight of the bottom beam). Non-zero
coefficients are given by the following relationships:

a1,3

πN1
= − a4,3

πN2
=

πq2
6βP

(πQ1πQ2πa1βh1),

a2,3 = a5,3 = 4a3,4 = 4a6,4 =
πq2
6βP

(πQ1πQ2πa1βN ),

a3,2 = − πq2
2βP

(πQ2πa1(πM1βh1 + βN )),
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a4,1 =
πq2πa1

πtβP
[πt(πh2(βTβh1 + βNβR)− πQ1πQ2βh1) + 2πνπQ1πQ2πh2βM ],

a5,1 = −πq2πa1

πtβP
[πt(βTβh1 + βNβR) + 2πνπQ1πQ2βM ],

a6,0 =
πq2πQ2

πtβP
[βh1(πνπQ1πa1 + πM1) + βN ],

a6,2 = −πq2πa1

2πtβP
[πtπQ2(πM1βh1 + βN ) + 2πνπQ1πQ2βM ].

Point forces and point moments may be also modelled by taking q(ξ) equal
to Dirac’s δ distribution or its derivative δ′, respectively. They may be also
more easily taken into account by splitting the solution into two parts describing
the deformation at each of two sides of the point of application of the load
and formulating an appropriate system of continuity conditions involving the
displacement compatibility conditions as well as the force equilibrium conditions.

4. Numerical validation of the theoretical model

Two cases are studied both analytically and numerically, with the use of
Abaqus/CAE 2022 FEA software. The first example is a section of a simply
supported composite RC-steel bridge deck in which the top slab is connected
with a non-symmetric steel I-beam with the use of a thick and flexible adhesive
layer. The girder is subject to body forces and UDL. The second example is
a reinforced-concrete simply-supported beam strengthened with a CFRP film
attached at the bottom face with the use of a thin and stiff adhesive layer,
which – due to its placement – undergoes significant elongation (contrary to
the bondline in the first example, which is placed near the section’s neutral
axis). The beam is subject to four point bending. Material parameters used in
these examples are listed in Table 1. As regards the values of Poisson’s ratio of
the polyurethane adhesives and CFRP, no data is available for these particular
materials, which were employed in the examples – they were estimated according
to published measurements performed on similar materials.

Since the considered analytical model as well as the numerical one are lin-
ear, obtained results may be scaled proportionally to the magnitude of applied
load. Deflections and normal stresses are presented as relative values where the
reference value is the one corresponding with a composite cross-section satis-
fying Bernoulli’s hypothesis of plane cross-section (strictly rigid connection at
interface – see Fig. 1):

(4.1)
wref = αk

MRL
2

ERIR
, σmin,ref =

E1

ER

MR

IR
|zmin|,

σmax,ref =
E2

ER

MR

IR
|zmax|, σa,ref =

Ea
ER

MR

IR
|za|,
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Table 1. Mechanical properties of materials used in numerical examples.

Young’s modulus of a concrete [66] Ec = 32.837GPa
Poisson’s ratio of a concrete [66] νc = 0.2

Self-weight of a concrete [66] γc = 25 kN/m3

Young’s modulus of a steel [67] Es = 210GPa
Poisson’s ratio of a steel [67] νs = 0.3

Self-weight of a steel [67] γs = 78.5 kN/m3

Young’s modulus of Sika c©CarboDur c© S512 [68] ECFRP = 165GPa
Poisson’s ratio of Sika c©CarboDur c© S512 [69] νCFRP = 0.3

Self-weight of Sika c©CarboDur c© S512 [68] γCFRP = 16 kN/m3

Young’s modulus of Sika c©PS adhesive [47] EPS = 24.10MPa
Poisson’s ratio of Sika c©PS adhesive [70, 71] νPS = 0.4

Young’s modulus of Sika c©PT adhesive [47] EPT = 779.74MPa
Poisson’s ratio of Sika c©PT adhesive [70, 71] νPT = 0.4

where MR stands for the maximum bending moment determined by means of
standard methods of structural mechanics, IR is the weighted 2nd moment of
area of the composite cross-section satisfying Bernoulli’s hypothesis, and ER is
any reference Young’s modulus:

IR =
E1

ER

[
I1 +A1

(
h1

2
− zR

)2]
+
E2

ER

[
I2 +A2

(
h1 + t+

h2

2
− zR

)2]
(4.2)

+
Ea
ER

[
bt3

12
+ bt

(
h1 +

t

2
− zR

)2]
,

zR =

E1
ER
A1

h1
2 + E2

ER
A2

(
h1 + t+ h2

2

)
+ Ea

ER
bt
(
h1 + t

2

)
E1
ER
A1 + E2

ER
A2 + Ea

ER
bt

.(4.3)

Coordinates zmin, zmax and za correspond with the distance of top fibers,
bottom fibers and centroid of adhesive layer, respectively, from the centroid
of the cross-section with rigid connection at interface. In the above formulas,
necessary adjustments must be made in case of non-symmetric cross-sections.

Shear stress is related to the following reference value:

(4.4) τref =
GaqeL

3b(h1 + h2)

4t(E1I1 + E2I2)

λ(eλ + 1)− 2(eλ − 1)

λ3(eλ + 1)
,

where

(4.5) λ = L

√
Ga

b

t

[
(h1 + h2 + 2t)(h1 + h2)

4(E1I1 + E2I2)
+

(
1

E1A1
+

1

E2A2

)]
.
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This is a theoretical value of maximum shear stress at the end of a simply
supported composite girder consisting of two bisymmetric beams connected with
an adhesive layer and loaded with UDL qe, according to a simplified theory in
which longitudinal deformation of the adhesive is neglected [48]. For loads other
than UDL, the equivalent UDL qe is taken as the resultant of all vertical loads
divided by the surface area of horizontal faces of the adhesive layer:

(4.6) qe =
ΣFz
bL

.

The results obtained from the theoretical model presented in this article
(denoted with TM 1) and from the Finite Element Analysis are also compared
with theoretical predictions of the simplified model (TM 2) in which longitudinal
deformation of the adhesive layer and shear deformation of beams are disregarded
[45, 46].

4.1. Example No 1 – composite RC-steel girder under UDL and self-weight

The element under consideration is a repetitive section of a composite bridge
deck consisting of a reinforced-concrete slab and a non-symmetric welded thin-
walled steel I-section bonded together with a flexible polyurethane Sika c©PS
adhesive. Geometry of the cross-section is shown in Fig. 6. The deck is subject
to UDL of magnitude 5 kN/m2. Girder’s self-weight is applied in the form of the
body forces. The beam is simply supported and the span length is equal 16.75m.

Fig. 6. Cross-section of a section of a composite RC-steel bridge deck.

As regards the analytical model, weighted mechanical characteristics were
determined for the RC slab. The solution is given by the sum of general solution
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of a homogeneous system and particular solution of non-homogeneous system,
since πq1 6= 0 and πq2 6= 0. It depends on 12 constants of integration, which are
determined with the use of the following boundary condition:

(4.7)

Supported end: Middle of the span:

N1(0) = 0,
N2(0) = 0,
M1(0) = 0,
M2(0) = 0,
w2(0) = 0,

σxx,a(0) = 0,



u1(L/2) = 0,
u2(L/2) = 0,
Q1(L/2) = 0,
Q2(L/2) = 0,
φ1(L/2) = 0,
φ2(L/2) = 0.

Strictly speaking, it is the bottom beam which is supported, and thus it is re-
quired that w2(0) = 0. The deflection of the top slab may be not equal to zero and
thus produce compression of the adhesive layer. A more appropriate boundary
condition is that normal stress in adhesive is zero at the traction free boundary.
However, in the specific case of a simply supported beam, in which both end
axial forces and both end bending moments are equal to zero, it may be checked
with (2.6) and (2.11) that εxx,a = 0. As a result, the condition σxx,a(0) = 0 is
equivalent to εzz,a(0) = 0 according to (2.13), what yields σzz(0) = 0 and – due
to (2.7) – also w1(0) = w2(0). It is an unrealistic situation, thus the distribu-
tion of axial and transverse normal stresses in the adhesive are flawed in this
situation, especially in the neighborhood of the traction-free end.

Since the considered analytical model is a linear elastic one, also in the numer-
ical model all materials are assumed to be linear elastic. For this reason cracking
of the concrete is disregarded. Reinforcement bars are modelled as truss elements
embedded in the volume of the concrete. Interfaces between component beams
and adhesive layer were tied one with another due to the use of finer mesh in
the adhesive layer. Due to symmetry of the problem only a quarter of the girder
was modelled and symmetry boundary conditions were applied (Fig. 7). Sym-
metry was also assumed at the side face of the concrete slab, as the considered
girder is a repetitive section of a wider bridge deck. A support was modelled by
constraining vertical displacement on a small region on the bottom face of the
steel section.

Graphs presenting distribution of relative values of deflection, normal stresses
in edge fibers of component beams as well as shear stress and longitudinal normal
stress in the adhesive are presented in Figs. 8–13. Due to symmetry, only half
of the graph is presented. The reference values given by (4.1) and (4.4) are
calculated with the use of:

αk =
5

48
, MR =

qtotL
2

8
, qtot = qb1 + γ1A1 + γ2A2, qe =

qtot

b
.
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Fig. 7. Numerical model of the composite bridge deck.

Fig. 8. Deflection of the bottom face of steel I-section.

Fig. 9. Normal stress in top and bottom fibers in the RC slab.
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Fig. 10. Normal stress in the top and bottom fibers of the steel I-section.

Fig. 11. Shear stress in the adhesive layer.

Fig. 12. Longitudinal normal stress in the adhesive layer.
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Fig. 13. Transverse normal (peel) stress in the adhesive layer.

It was observed that the through-the-width distribution of both longitudinal
and transverse (peel) normal stress in the adhesive is not uniform – for this
reason mean stresses were calculated and compared with theoretical predictions
in Figs. 12 and 13.

4.2. Example No 2 – 4-point bending of a RC beam strengthened with a CFRP film

The second example deals with a reinforced-concrete beam strengthened with
the use of the Sika c©CarboDur c© S512 CFRP strengthening film, attached to the
bottom face of the beam with the use of Sika c©PT stiff polyurethane. Geometry
of the beam is shown in Fig. 14. The beam is simply supported – the span
length is equal L = 3m, overhangs are equal 10 cm. The beam is subject to
four-point bending with two point forces P = 20 kN with loading points placed
symmetrically on the beam at a distance 100 cm one from another. CFRP film
is attached at a distance of 6 cm from the supported cross-section. Self-weight
is disregarded as being negligibly small, compared to the external load.

The presence of the reinforcement was accounted for in the analytical model
by the use of weighted geometric characteristics of the RC cross-section. The
point load is accounted for by splitting the solution into two parts, each de-
scribing the deformation on one side of the loaded cross-section. Functions cor-
responding with the left part (x ∈ (0;L/3)) are denoted with (L) superscript,
while those corresponding with the right part (x ∈ (L/3;L/2)) are denoted
with (R). Since πq1 = πq2 = 0, the solution in each interval is given by the gen-
eral solution of a homogeneous system, depending on 12 constants of integration.
The 24 unknowns are determined from the linear system of algebraic equations
given by the following boundary conditions and compatibility conditions:
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Fig. 14. Cross-section of an RC beam strengthened with a CFRP film.

boundary conditions boundary conditions
on supported end: in the middle of the span:

N
(L)
1 (0) = 0,

N
(L)
2 (0) = 0,

M
(L)
1 (0) = 0,

M
(L)
2 (0) = 0,

w
(L)
2 (0) = 0,

σ
(L)
xx,a(0) = 0,



u
(R)
1 (L/2) = 0,

u
(R)
2 (L/2) = 0,

Q
(R)
1 (L/2) = 0,

Q
(R)
2 (L/2) = 0,

φ
(R)
1 (L/2) = 0,

φ
(R)
2 (L/2) = 0,

(4.8)

displacement compatibility: force equilibrium:

u
(L)
1 (L/3) = u

(R)
1 (L/3),

u
(L)
2 (L/3) = u

(R)
2 (L/3),

φ
(L)
1 (L/3) = φ

(R)
1 (L/3),

φ
(L)
2 (L/3) = φ

(R)
2 (L/3),

w
(L)
1 (L/3) = w

(R)
1 (L/3),

w
(L)
2 (L/3) = w

(R)
2 (L/3),



N
(L)
1 (L/3) = N

(R)
1 (L/3),

N
(L)
2 (L/3) = N

(R)
2 (L/3),

Q
(L)
1 (L/3) = Q

(R)
1 (L/3) + P,

Q
(L)
2 (L/3) = Q

(R)
2 (L/3),

M
(L)
1 (L/3) = M

(R)
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(4.9)

Linear elasticity is assumed in the numerical model and cracking of concrete
is neglected. Reinforcement bars are modelled as truss elements embedded in
the concrete beam. Full adhesion is assumed between the CFRP film and the
adhesive layer. Since finer mesh was used for the adhesive and CFRP, compared
to the RC beam, interface between adhesive and concrete was tied. The im-
movable support was modelled as a rigid body and the frictional contact was
assumed between concrete and the support. Due to contact analysis, geometric
non-linearity was accounted for in the numerical analysis, however its impact on
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Fig. 15. Numerical model and RC beam strengthened with a CFRP film.

Fig. 16. Deflection of the bottom face of the RC beam.

Fig. 17. Normal stress in top and bottom fibers of the RC beam.
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Fig. 18. Normal stress in the centroid of the CFRP film.

Fig. 19. Shear stress in the adhesive layer.

Fig. 20. Longitudinal normal stress in the adhesive layer.
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the final results is negligible. The bottom face of the support is fixed. Symmetry
conditions are prescribed so that only a quarter of the system may be modelled
(Fig. 15). External load was applied in the form of enforced displacement of
a steel plate pressing the beam through an elastomeric spacer.

Graphs presented in Figs. 16–20 show the relative deflection, edge normal
stresses in the RC beam, average stress in CFRP film as well as longitudinal
normal and shear stress in the adhesive layer. The reference values are calculated
according to (4.1) and (4.4) with:

αk =
23

216
, MR =

PL

3
, qe =

2P

bl
.

The results of the FEA exhibit some irregularities in the distribution of
stresses in the adhesive layer, which are caused most probably by significant
mesh mismatch between two tied surfaces, namely the bottom face of the RC
beam and much more finely meshed top face of the adhesive layer. The curves
were regularized by plotting an average value over a neighborhood of each con-
sidered point. These smoothened curved are presented in Figs. 19 and 20.

It may be seen that compatibility conditions (4.9) ensure continuity of all
generalized displacements as well as their derivatives except for the derivatives
of deflection (which is different from an angle of rotation in the Timoshenko–
Ehrenfest theory). This discontinuity makes also the distribution of dεzz,a

dx dis-
continuous, what in turn affects the distribution of stresses σxx,a and σzz,a. As
a result the obtained peel stress distribution is unrealistic and for this reason
it was not presented. The effect of discontinuity of derivatives of these stresses
may be observed in Fig. 20. Analysis of additional examples indicates that such
a disturbance is stronger for more stiff adhesive layers. In order to overcome this
drawback of the presented theory, one may model any point load in the form of
linear load distributed over a very short section of a beam.

5. Summary and conclusions

A theoretical model of a composite girder with an adhesive bondline was
presented in the paper. The system of governing equations was derived from
equations of equilibrium of cross-sectional forces after employing fundamen-
tal relations of the linear theory of elasticity and constitutive relations of the
Timoshenko–Ehrenfest beam theory together with kinematic constraints on de-
formation of the adhesive layer. The obtained system of equations was trans-
formed into a linear non-homogeneous system of the first order ordinary differ-
ential equations expressed in terms of the similarity numbers. The analytical
solution was found with the use of the method of generalized eigenvectors. Ana-
lytical solutions were then validated numerically by comparison with solutions of
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two distinct 3D problems, obtained with the use of the Finite Element Method.
According to the obtained results following conclusions may be formulated:
• Accounting for shear deformation of beams (the Timoshenko–Ehrenfest

theory) as well as for extensibility of the adhesive layer has minor im-
pact on the results obtained from theoretical models. A relative difference
between predictions of these two models, as regards displacements and
stresses, is within ca. 0.5%÷ 7%. It indicates that disregarding the above
mentioned issues in the TM 2 presented in [45, 46, 48] do not introduce
a significant error. It may be of practical importance as this simplified
model provides closed-form expressions for i.e. maximal deflection or max-
imal stresses [47, 48], as opposed to the refined TM 1, for which such
expressions are impossible to derive due to their complexity. On the other
hand, the TM 1 model presented in this research enables estimation of lon-
gitudinal normal stress in the adhesive, contrary to the simplified TM 2.
• Theoretical estimates of a maximal deflection are in good agreement with

the results of FEA, with the relative error not exceeding 4%. The refined
theoretical model TM 1 provides somewhat better prediction.
• Similarly the maximal shear stress in the adhesive is estimated well by

both theoretical models, with a relative difference from the FEA results
less than 5%. While the maximal value and overall distribution of shear
stress in the adhesive are reproduced correctly, the true distribution is less
uniform than the one predicted theoretically – this is due to the influence
of boundary conditions in the neighborhood of the supported zone.
• Both longitudinal and transverse (peel) stresses in the adhesive in a beam

subject to UDL are estimated correctly in the areas which are sufficiently
distant from the supports. Close to the areas where kinematic boundary
conditions are specified, theoretical estimates significantly underestimate
the magnitude of stress.
• In case of beams loaded with point forces the proposed theory do not

describe the distribution of peel stress correctly. Distribution of axial nor-
mal stress in adhesive is flawed by discontinuity of derivative of deflection,
however, it may still provide a sufficiently accurate estimation.
• The relative error of theoretical estimates of normal stresses in edge fibers

of adhesively bonded elements is within 0, 5% ÷ 26%. In most of cases
TM 1 and TM 2 slightly overestimate the results of the FEA, providing
safe estimates – the only deviation from this rule regards compressive stress
in bottom fibers of an RC slab in a composite bridge deck, however, the
greatest compressive stress occurs anyway in top fibers. It has already
been observed that TM 2 provides safe estimates of normal stresses in
the outermost material fibers [45–47]. Since discrepancies between the two
considered models are relatively small, one should expect that this property
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should also concern the presented TM 1 model – this should be, however,
verified by a more extensive study.
• It is worth to notice that the simple composite Bernoulli–Euler theory uti-

lizing weighted characteristics of a cross-section gives good approximation
of normal stresses in edge fibers of the top and the bottom beam (the rel-
ative stresses are close to 1 in Figs. 9, 10, 17 and 18). It fails, however, in
estimation of deflection of the beam and longitudinal normal stress in the
adhesive layer (see Figs. 8, 12 and 20).

It may be stated that the presented theoretical model provides a useful tool
for analysis of adhesively bonded composite girders. Its predictions are in fair
agreement with the results of the detailed 3D Finite Element Analysis. Calcula-
tions may be performed by any numeric and/or symbolic computing environment
– this research was carried out using free and open source software, namely wx-
Maxima 19.05.7 and GNU Octave 7.1.0. After rewriting all necessary formula,
preparation of an executable script accounting for the assumed beam’s load and
support layout is far less time-consuming than elaboration of the FEM model.
Such a script enables solving whole class of corresponding problems, unlike the
FEM model which corresponds with a fixed geometry. Further research may fo-
cus on refining the obtained solutions in the areas where boundary effects become
significant.
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