PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The use of liquid crystal thermography TLC and particle image velocimetry PIV in selected technical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, the energy cost is very high and this problem is carried out to seek techniques for improvement of the aerothermal and thermal (heat flow) systems performances in different technical applications. The transient and steady-state techniques with liquid crystals for the surface temperature and heat transfer coefficient or Nusselt number distribution measurements have been developed. The flow pattern produced by transverse vortex generators (ribs) and other fluid obstacles (e.g. turbine blades) was visualized using liquid crystals (Liquid Crystal Thermography) in combination with the true-colour image processing as well as planar beam of double-impulse laser tailored by a cylindrical lens and oil particles (particle image velocimetry or laser anemometry). Experiments using both research tools were performed at Gdańsk University of Technology, Faculty of Mechanical Engineering. Present work provides selected results obtained during this research.
Rocznik
Strony
129--147
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Gdańsk University of Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
  • Gdańsk University of Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
Bibliografia
  • [1] Mikielewicz D., Wajs J., Gliński M., Zrooga A.-B.R.S.: Experimental investigation of dryout of SES 36, R134a, R123 and ethanol in vertical small diameter tubes. Exp. Therm. Fluid Sci. 44(2013), 556–564.
  • [2] Piasecka M., Strąk K., Maciejewska B.:: Calculations of flow boiling heat transfer in a minichannel based on liquid crystal and infrared thermography data. Heat Transfer Eng. 38(2017), 3, 332–346.
  • [3] Wajs J., Mikielewicz D.: Determination of dryout localization using a fiveequation model of annular flow for boiling in minichannels. Arch. Thermodyn. 38(2017), 1, 123–139. DOI: 10.1515/aoter-2017-0007
  • [4] Mikielewicz D., Mikielewicz J., Wajs J., Gliński M.: Modelling of dryout process in an annular flow. Heat Transf. Res. 39(2008), 7, 587–596. DOI: 10.1615/HeatTransRes.v39.i7.30
  • [5] Reinitzer R.: Beitrage zur Kenntniss des Cholestrins. Monatschr. Chem. Wien 9(1899), 421–441.
  • [6] Moffat R.J.: Experimental heat transfer. In: Proc. 9th Int. Heat Transfer Conf. Jerusalem 1(1991), 308–310.
  • [7] Jones T.V., Wang Z., Ireland P.T.: The use of liquid crystals in aerodynamic and heat transfer experiments. In: Proc. First I.Mech.E. Sem. on optical methods and Data Processing in Heat and Fluid Flow, City University London, 1992, 51–65.
  • [8] Stasiek J.: Thermochromic liquid crystals and true-colour image processing in heat transfer and fluid flow research. Heat and Mass Transfer 33(1997), 27–39.
  • [9] Stasiek J.A., Kowalewski T.A.: Thermochromic liquid crystals applied for heat transfer research. Optoelectronics Rev. 10(2002), 1, 1–10.
  • [10] Ziemba A., Fornalik-Wajs E.: Evaluation of colour space transformation suitability to optical temperature measurements. J. Physics Conf. Ser. 745(2016), 032108. DOI:10.1088/1742-6596/745/3/032108
  • [11] Stasiek J., Stasiek A., Jewartowski M., Collins M.W.: Liquid crystal thermography and true-colour digital image processing. Opt. Laser Technol. 38(2006), 243–256.
  • [12] Akino N., Kunugi T., Ichimiya K., Mitsuchiro K., Ueda M.: Improved liquid crystal thermography excluding human colour sensation. ASME J.Heat Transfer 111(1989), 558–565.
  • [13] Stasiek J., Collins M.W.: The use of liquid crystals and true-colour image processing in heat and fluid flow experiments. In: Atlas of Visualization II, CRC Press, 1996, 79–104.
  • [14] Abdullah N., Abu Talib. A, Jaafar, A.A., Salleh, M.A.M., Chong, W.T.: The basics and issues of Thermochromic Liquid Crystal Calibrations. Exp. Therm. Fluid Sci. 34(2010), 1089–1121.
  • [15] Satta F. Simoni D., Tanda G.: Experimental investigation of flow and heat transfer in a rectangular channel with 45◦ angled ribs on one/two walls. Exp. Therm. Fluid Sci. 37(2012), 46–56.
  • [16] Liu J., Hussain S., Wang J., Wang L., Xie G., Sunden B.: Heat transfer enhancement and turbulent flow in a high aspect ratio channel (4:1) with ribs of various truncation types and arrangements. Int. J. Therm. Sci. 123(2018), 99–116.
  • [17] Satta F., Tanda G.: Measurement of local heat transfer coefficient on the endwall of a turbine blade cascade by liquid crystal thermography. Exp. Therm. Fluid Sci. 58(2014), 209–215.
  • [18] Fornalik E.: Flow patterns generated by a strong magnetic field. J. Theor. App. Mech-Pol 45(2007), 3, 557–568.
  • [19] Stasiek J., Jewartowski M. and Kowalewski T.A.: The use of liquid crystal thermography in selected technical and medical applications – recent development. J. Crystal. Process Technol. 4(2014), 46–59.
  • [20] Fornalik E., Szmyd J.: Experimental investigations of jet flows. J. Theor. Appl. Mech-Pol 45(2007), 3, 569–586.
  • [21] Abidi-Saad A., Polidori G., Kadja M., Beaumont F., Popa C.V., Korichi A.: Experimental investigation of natural convection in a vertical rib-roughened channel with asymmetric heating. Mech. Res. Commun. 76(2016), 1–10.
  • [22] Liou T.M., Chang S.W., Chan S.P.: Effect of rib orientation on thermal and fluid-flow features in a two-pass parallelogram channel with abrupt entrance. Int. J. Heat. Mass Tran. 116(2018), 152–165.
  • [23] Zhai Y., Xia G., Chen Z., Li Z.: Micro-PIV study of flow and the formation of vortex in micro heat sinks with cavities and ribs. Int. J. Heat Mass Tran. 98(2016), 380–389.
  • [24] Blonski S., Korczyk P.M., Kowalewski T.A.: Analysis of turbulence in a micro- channel emulsifier. Int. J. Therm. Sci. 46(2007), 11, 1126–1141.
  • [25] HALLCREST Handbook of Thermochromic Liquid Crystal Technology LCR Hallcrest, 2014.
  • [26] Mikielewicz D., Stasiek A., Jewartowski M. and Stasiek J.: Measurements of heat transfer enhanced by the use of transverse vortex generators. Appl. Therm. Eng. 49(2012), 61–72.
  • [27] Giampaolo A.: Gas turbine handbook: principles and practices. Fairmont Press, 2006.
Uwagi
EN
This article presents the results of measurements obtained during the implementation of two research projects of the Ministry of Science and Higher Education: 3T10B07329N and N512 474440.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4df7afd0-3dfd-45ba-832f-e724153f7a02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.