PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Source term model for streamwise Rod Vortex Generator modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, the new method of modelling of Rod Vortex Generators (RVGs) was proposed. RVGs are inclined rods, mounted in boundary layer used to flow control. RVGs were intensively investigated in Institute of Fluid-Flow Machinery in Gdansk, Poland. The research results indicate high potential of RVGs to flow control in wide range of Mach numbers (Mach 0.3-1.45) in the main flow. Due to the flow structure details generated by RVG, it is required to create fine grids in the vicinity of RVGs, which increase the computational cost. In order to overcome this difficulty and reduce computational cost the new numerical models of RVGs are proposed, which use the modification of BAY model. Using BAY model it is not needed to resolve the shape of RVG in detail and it is possible to use orthogonal meshes. The BAY model was originally proposed to predict flows behind thin-plate vortex generators. This model works by adding momentum source term to Reynolds-Averaged Navier-Stokes equations in ANSYS Fluent. The BAY model spatial vectors orientation was modified and some simplifications were performed. The model was calibrated and simulations were carried out for the single rod. The results and effectiveness of modified BAY model were compared with wind-tunnel experiment results and grid-resolved model.
Twórcy
  • Institute of Aviation, Department of Aerodynamics Krakowska Avenue 110/114, 02-256 Warsaw, Poland
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences Department of Aerodynamics Fiszera Street 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Bender, E.E., Anderson, B.H., Yagle, P.J., Vortex generator modeling for Navier-Stokes codes, ASME Article FEDSM99-6929, Jul. 1999.
  • [2] Doerffer, P., Szwaba, R., Flaszyński, P., PL389685-A1, 06 June 2011.
  • [3] Flaszyński, P., Symulacje numeryczne badań pojedynczego generatora wirów w przepływie poddźwiękowym i naddźwiękowym, raport IMP PAN, Gdansk 2011.
  • [4] Flaszyński, P., Szwaba, R., Doerffer, P., Comparison of vortex generators effect on shock wave induced separation, AIAA-2016-3328, Conference Proceedings of the (American Institute of Aeronautics and Astronautics) AIAA AVIATION 2016, Washington.
  • [5] Krzysiak, A., Zastosowanie nowego rodzaju strumieniowych generatorów wirów do sterowania przepływem, Prace Instytutu Lotnictwa, Nr 212/2011.
  • [6] Lin, J.C., Review of research on low-profile vortex generators to control boundary-layer separation, Progress in Aerospace Sciences, Vol. 38, pp. 389-420, 2002.
  • [7] Rokicki, J., Stalewski, W., Żółtak, J., Evolutionary methods for design, optimization and control, eds: T. Burczynski and J. Périaux, © CIMNE, Barcelona, Spain 2009.
  • [8] Stalewski, W., Sznajder,J., Modification of aerodynamic wing loads by fluidic devices, Journal of KONES Powertrain and Transport, Vol. 21, No. 3, pp. 271-278, 2014.
  • [9] Stalewski, W., Sznajder, J., Computational investigations of active flow control on helicopter-rotor blades, Journal of KONES Powertrain and Transport, Vol. 21, No. 2, pp. 281-288, 2014.
  • [10] Szwaba, R., Doerffer, P., Shock wave boundary layer interaction control by rod vortex generators, Conference Proceedings of the XXX International Symposium on Shock Waves, Tel Aviv 2015.
  • [11] Szwaba, R., Badania eksperymentalne pojedynczych, optymalizowanych, prętowych generatorów wirów w dyszy płaskiej dla M = 0.3, Opracowanie IMP PAN, Nr arch. 288, Gdansk 2012.
  • [12] Szwaba, R., Influence of air-jet vortex generator diameter on separation region, Journal of Thermal Science, Vol. 22, No. 4, pp. 294-303, 2013.
  • [13] Sznajder J., Kwiatkowski T., Effects of turbulence induced by micro vortex generators on shockwave – boundary layer interaction, Journal of KONES Powertrain and Transport, Vol. 22, No. 2, pp. 241-248, 2015.
  • [14] Sznajder, J, Kwiatkowski, T., Selected aspects of introduction of a laminar-flow wing into transport aviation, Technika Transportu Szynowego Nr 12, 2015.
  • [15] Tejero, F., Doerffer, P., Szulc, O., Application of a passive flow control device on helicopter rotor blades, Journal of the American Helicopter Society, Vol. 61/1, pp. 1-13, 2016.
  • [16] Tejero, F., Doerffer, P., Flaszyński, P., Szulc, O., Numerical investigation of rod vortex generators on hovering helicopter rotor blades, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), Barcelona, Spain 2014.
  • [17] Tejero, F., Doerffer, P., Szulc, O., Aerodynamic analysis of potential use of flow control devices on helicopter rotor blades, Journal of Physics: Conference Series, 2014, pp. 1-8.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4df6f46c-abeb-489e-ba4f-0d1852b848c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.