PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of sediment formed in biogas production on productivity of crops and ecologic character of production of onion for chives

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ osadu powstającego podczas produkcji biogazu na produktywność uprawy i ekologiczność produkcji uprawy cebuli na szczypiorek
Języki publikacji
RU
Abstrakty
EN
The solid fraction, according to many researches, is an effective organic fertilizer, the activity of which is at the level of mineral fertilizers and even exceeds their effectiveness, while the use of the liquid fraction does not always give positive results. In the article the optimal concentration of the liquid fraction in water solution for fertilization during cultivation of onion for chives in soil was determined. Sediment from biogas production was obtained at the thermophilic fermentation (50ºC) of cattle manure in the laboratory institution which operated at the periodical regime of loading. Fermentation lasted 25 days. Seven variants of plant feeding were assessed: clean water (control), mineral fertilizers (solution of ammonium nitrate in water in the concentration of 1:25), unsolved liquid biofuel fraction and mixture of liquid fraction from the postferment with water in concentrations of 1:10, 1:50, 1:100, 1:500. It was determined that the highest efficiency was observed in case of fertilization of plants with the mixture of liquid fraction from postferment with concentration of 1:500. Along with the increase of liquid fraction concentration and fertilization of plants with water solution of mineral fertilizers, onion productivity dropped slightly. Fertilization of plants with the liquid fraction from postferment resulted in fractional dying of plants and reduction of efficiency. The crop control of nitrogen content proved that in case of every day watering of onion with clean water and mixture of liquid fraction with water concentration of 1:100-1:500 did not exceed the maximum admissible concentration which is 800 mg⋅kg-1. Thus, in case of onion cultivation for chives, taking into consideration the crop growth and low nitrogen content, it is recommended to use the mixture of liquid fraction with water of 1:500 concentration.
PL
Frakcja stała, zgodnie z wieloma badaniami, jest skutecznym nawozem organicznym, którego działanie jest na poziomie nawozów mineralnych, a nawet przewyższa ich efektywność, podczas gdy używanie frakcji płynnej nie zawsze daje pozytywne wyniki. Nie określono jednak, które dokładnie stężenia frakcji płynnej pofermentu po zastosowaniu jako nawóz organiczny dały wynik ujemny lub dodatni. W związku z tym, w artykule ustalono optymalne stężenie frakcji płynnej w wodnym roztworze do nawożenia roślin podczas uprawy cebuli na szczypiorek w glebie. Osad z produkcji biogazu otrzymano przy termofilnej fermentacji (50ºC) obornika bydlęcego w zakładzie laboratoryjnym, który działał przy okresowym reżimie załadunku. Czas fermentacji wynosił 25 dni. Oceniono siedem wariantów żywienia roślin: czysta woda (kontrola), nawozy mineralne (roztwór azotanu amonu w wodzie o koncentracji 1:25), nierozcieńczoną ciekłą frakcję biopaliwową i mieszaninę ciekłej frakcji z pofermentu z woda w stężeniach 1:10, 1:50, 1:100, 1:500. Ustalono, że najwyższa wydajność zaobserwowano przy nawożeniu roślin mieszaniną ciekłej frakcji z pofermentu o stężeniu 1:500. Wraz ze wzrostem stężenia płynnej frakcji i nawożeniem roślin wodnym roztworem nawozów mineralnych, wydajność cebuli nieco spadła. Nawożenie roślin stężoną frakcją ciekłą z pofermentu spowodowało częściową śmierć roślin i spadek wydajności. Kontrola uprawy na zawartość azotanów wykazała, że przy codziennym podlewaniu cebuli czystą wodą i mieszaniną ciekłej frakcji o stężeniu wody 1:100-1:500, nie przekroczono maksymalnego, dopuszczalnego stężenia (PDK), które wynosi 800 mg·kg-1. W związku z tym, w przypadku uprawy cebuli na szczypiorek, biorąc pod uwagę wzrost plonu i niską zawartość azotanów, zaleca się stosowanie mieszaniny frakcji płynnej z wodą o stężeniu 1:500.
Rocznik
Strony
105--125
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Institute of Technology and Life Sciences in Falenty, Warsaw Branch, Poland
  • National University of Life and Environmental Sciences, Kiev, Ukraine
autor
  • Department of Agricultural and Transport Machines, University of Life Sciences in Lublin, Poland
autor
  • National University of Life and Environmental Sciences, Kiev, Ukraine
autor
  • National University of Life and Environmental Sciences, Kiev, Ukraine
autor
  • Institute of Technology and Life Sciences in Falenty, Warsaw Branch, Poland
Bibliografia
  • Mirel, I., Isacu, M., Bakos, M. (2012). Harnessing the untapped renewable energy potential of the organic loads of urban wastewater. 12th International Multidisciplinary Scientific Geoconference, SGEM, Albena, Bulgaria, IV, 515-522. doi:10.1109/iembs.2011.6090487.
  • Tambone, F., Scaglia, B., D'Imporzano, G., Schievano, A, Orzi, V., Salati, S., Adani, F. (2010). Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81(8). 577-583. doi: 10.1016/j.chemosphere.2010.08.034.
  • Sahlstrom, L. (2003). A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource technology, 87(2), 161-166. doi: 10.1016/S0960-8524(02)00168-2.
  • Kuusik, A., Pachel, K., Kuusik A., Loigu, E. (2017). Possible agricultural use of digestate. Proceedings of the Estonian academy of sciences, 66(1), 64-74. doi: 10.3176/proc.2017.1.10.
  • Bonetta, Sil., Bonetta Sara, Ferretti E., Fezia G., Gilli G., Carraro E. (2014). Agricultural Reuse of the Digestate from Anaerobic Co-Digestion of Organic Waste: Microbiological Contamination, Metal Hazards and Fertilizing Performance. Water air and soil pollution, 225(8). №2046. doi: 10.1007/s11270-014-2046-2.
  • Pampillon-Gonzalez, L., Luna-Guid, M., Ruiz-Valdiviezo, M., Franco-Hernandez, O., Fernandez-Luqueno, F., Paredes-Lopez, O., Hernandez, G., Dendooven, L. (2017). Greenhouse Gas Emissions and Growth of Wheat Cultivated in Soil Amended with Digestatefrom Biogas Production. Pedosphere, 27(2), 318-327. doi: 10.1016/S1002-0160(17)60319-9.
  • Pecharaply, A., Parkpian, P., Annachhatre, A.P., Jugsujinda, A. (2007). Influence of anaerobic codigestion of sewage and brewery sludges on biogas production and sludge quality. Journal of environmental science and health part a-toxic/hazardous substances & environmental engineering, 42(7), 911-923. doi: 10.1080/10934520701369818.
  • Hai, D.M., Qiu, X., Xu, H., Honda, M., Yabe, M., Kadokami, K., Shimasaki, Y., Oshima, Y. (2017). Contaminants in Liquid Organic Fertilizers Used for Agriculture in Japan. Bulletin of environmental contamination and toxicology, 99(1), 131-137. doi: 10.1007/s00128-017-2081-y.
  • Suominen, K., Verta, M., Marttinen S. (2014). Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety. Scince of the total environment. 491 (Special Issue). 192-199. doi: 10.1016/j.scitotenv.2014.02.036.
  • Bayle, S., Cariou, S., Despres, J.-F., Chaignaud, M., Cadiere, A., Martinez, C., Roig, B., Fanlo, J.-L. (2016). Biological and Chemical Atmospheric Emissions of the Biogas Industry. 5th International conference on environmental odour monitoring & control, NOSE 2016, Ischia, Italy. Chemical Engineering Transactions, 54. 295-300. doi: 10.3303/CET1654050.
  • Al Seadi, T., Drosg, B., Fuchs, W., Rutz, D., Janssen, R. (2013). Biogas digestate quality and utilization. Biogas handbook: science, production and applications. 5. 267-301. doi: 10.1533/9780857097415. 2.267.
  • Czekala, W., Dach, J., Dong, R., Janczak, D., Malinska, K., Jozwiakowski, K., Smurzynska, A., Cieslik, M. (2017). Composting potential of the solid fraction of digested pulp produced by a biogas plant. Biosystems engineering, 160. 25-29. doi: 10.1016/j.biosystemseng.2017.05.003.
  • Stefaniuk, M., Bartminski, P., Rozylo, K., Debicki, R., Oleszczuk, P. (2015). Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. Journal of hazardous materials, 298. 195-202. doi: 10.1016/j.jhazmat.2015.05.026.
  • Nicoletto, C., Santagata, S., Zanin, G., Sambo, P. (2014). Effect of the anaerobic digestion residues use on lettuce yield and quality. Scientia horticulturae. 180. 207-213. doi: 10.1016/j.scienta.2014. 10.028.
  • Odlare, M., Arthurson, V., Pell, M., Svensson, K., Nehrenheim, E., Abubaker, J. (2011). Land application of organic waste – Effects on the soil ecosystem. Applied Energy, 88(6), 2210-2218. doi: 10.1016/j.apenergy.2010.12.043.
  • Odlare, M., Lindmark, J., Ericsson, A., Pell, M. (2015). Use of organic wastes in agriculture. 7th International Conference on Applied Energy (ICAE), 2015, Abu Dhabi, U Arab Emirates. Clean, efficient and affordable energy for a sustainable future. 75. 2472-2476. doi: 10.1016/j.egypro.2015.07.225.
  • Nabel, M., Schrey, S.D., Poorter, H., Koller, R., Jablonowski, N.D. (2017). Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass & Bioenergy, 107. 207-213. doi: 10.1016/j.biombioe.2017.10.009.
  • Muller-Stover, D.S., Sun, G., Kroff, P., Thomsen, S.T., Hauggaard-Nielsen, H. (2016). Anaerobic codigestion of perennials: Methane potential and digestate nitrogen fertilizer value. Journal of plant nutrition and soil science, 179(6), 696-704. doi: 10.1002/jpln.201500599.
  • Rozylo, K., Gawlik-Dziki, U., Swieca, M., Rozylo, R., Palys, E. (2016). Winter wheat fertilized with biogas residue and mining waste: yielding and the quality of grain. Journal of the science of food and agriculture, 96(10), 3454-3461. doi: 10.1002/jsfa.7528.
  • Garg, R.N., Pathak, H., Das, D.K., Tomar, R.K. (2005). Use of flyash and biogas slurry for improving wheat yield and physical properties of soil. Environmental Monitoring and Assessment, 102(1-3), 1-9. doi: 10.1007/s10661-005-2021-x.
  • Svensson, K., Odlare, M., Pell, M. (2004). The fertilizing effect of compost and biogas residues from source separated household waste. The Journal of Agricultural Science, 142(4), 461-467. doi: 10.1017/S0021859604004514.
  • Kocar, G. (2008). Anaerobic digesters: from waste to energy crops as an alternative energy source. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 30. 660-669. doi: 10.1080/00908310600628404.
  • Båth, B., Rämert, B. (1999). Organic Household Wastes as a Nitrogen Source in Leek Production. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 49(2), 201-208. doi: 10.1080/713782027.
  • Rivard C.J., Rodriguez, J.B., Nagle, N.J., Self, J.R., Kay, B.D., Soltanpour, P.N., Nieves, R.A. (1995). Anaerobic digestion of municipal solid waste. Applied Biochemistry and Biotechnology, 51. 125-135. doi: 10.1007/BF02933417.
  • Montemurro, F., Canali, S., Convertini, G., Vitti C. (2008). Anaerobic digestates application on fodder crops: effects on plant and soil. 25th National Congress of the Societa-Italiana-di-Chimica-Agraria, Pisa, Italy. Agrochemica. 52, 297-312.
  • Wentzel, S., Joergensen, R.G. (2016). Effects of biogas and raw slurries on grass growth and soil microbial indices. Journal of plant nutrition and soil science, 179(2), 215-222. doi: 10.1002/jpln.201400544.
  • Simeckova, J., Elbl, J., Kintl, A. (2016). Changes in content of soil mineral nitrogen and utilization of mineral nitrogen by soil microorganusms due to application of different fertilizers. 23rd International PhD Students Conference (MendelNet), 9-10 November, 2016, Mendel Univ Brno, Fac AgriSciences, Brno, Czech Republic, 486-491.
  • Neves, A.C., Bergamini, C.N., Leonardo R. de O., Goncalves, M.P., Zenatti, D.C., Hermes, E. (2017). Effect of biofertilizer obtained by anaerobic digestion of cassava effluent on the development of crambe plants. Revista Brasiliera de engenharia agricola e ambiental, 21(10), 681-685. doi: 10.1590/1807-1929/agriambi.v21n10p681-685.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4df261ea-51b2-4937-8e41-f47a389d213f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.