Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We demonstrate an experimental Spatio-Temporal Optical Coherence Tomography (STOC-T) system featuring optimized illumination and an increased lateral resolution of approximately 3 µm. The integration of high-speed phase randomization with a numerical averaging process facilitates a noticeable improvement in the signal-tonoise ratio. The effectiveness of this enhancement is demonstrated through volumetric imaging of a scattering object, and it enables in vivo imaging of the human retina at the cellular level. Additionally, the experiment is supported by computational aberration-correction techniques to achieve high-resolution in vivo imaging of the human retina. The visualization of retinal cone mosaics, and ganglion cell somas was achieved through contrast enhancement during the averaging process.
Wydawca
Czasopismo
Rocznik
Tom
Strony
52--61
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
- International Centre for Translational Eye Research, Skierniewicka 10A, Warsaw 01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
autor
- International Centre for Translational Eye Research, Skierniewicka 10A, Warsaw 01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
autor
- International Centre for Translational Eye Research, Skierniewicka 10A, Warsaw 01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, Warszawa 02-093, Poland
autor
- Center for Physical Sciences and Technology, Sauletekio al. 3, Vilnius 10257, Lithuania
autor
- Center for Physical Sciences and Technology, Sauletekio al. 3, Vilnius 10257, Lithuania
autor
- International Centre for Translational Eye Research, Skierniewicka 10A, Warsaw 01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
Bibliografia
- [1] R.G. Gregg M.A. McCall S.C. Massey Function and Anatomy of the Mammalian Retina in: Retina 2013 Elsevier pp. 360-400 10.1016/B978-1-4557-0737-9.00015-1.
- [2] Balendra SI, Normando EM, Bloom PA, Cordeiro MF. Advances in retinal ganglion cell imaging. Eye Oct. 2015;29(10):1260-9. https://doi.org/10.1038/eye.2015.154.
- [3] Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal ganglion cells-diversity of cell types and clinical relevance. Front Neurol May 2021;12:661938. https://doi. org/10.3389/fneur.2021.661938.
- [4] Nusinowitz S. Anatomically Separate Rod and Cone Signaling Pathways Encyclopedia of the Eye. Elsevier; 2010. p. 67-72. https://doi.org/10.1016/B978- 0-12-374203-2.00223-2.
- [5] Lakkis G. The ganglion cell complex and glaucoma. Pharma Mar. 2014;3:28-32.
- [6] Liu WW, Margeta MA. Imaging retinal ganglion cell death and dysfunction in glaucoma. Int Ophthalmol Clin 2019;59(4):41-54. https://doi.org/10.1097/IIO.0000000000000285.
- [7] Harwerth RS, Carter-Dawson L, Shen F, Smith EL, Crawford MLJ. Ganglion Cell Losses Underlying Visual Field Defects from Experimental Glaucoma. Investig Ophthalmol Vis Sci 1999;40(10):2242-50.
- [8] Drexler W, Fujimoto J. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res Jan. 2008;27(1):45-88. https://doi.org/10.1016/j.preteyeres.2007.07.005.
- [9] Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc Natl Acad Sci Nov. 2017;114(48):12803-8. https://doi.org/10.1073/pnas.1711734114.
- [10] Zhang F, et al. In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics. Biomed Opt Express Aug. 2024;15 (8):4675. https://doi.org/10.1364/BOE.533249.
- [11] Liu Z, Zhang F, Zucca K, Agrawal A, Hammer DX. Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina. Biomed Opt Express Nov. 2022;13(11):5860. https://doi.org/ 10.1364/BOE.462594.
- [12] Auksorius E, Borycki D, Wojtkowski M. Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. Biomed Opt Express Dec. 2019;10(12):6390. https://doi.org/10.1364/BOE.10.006390.
- [13] Hillmann D, Spahr H, Pfäffle C, Sudkamp H, Franke G, Hüttmann G. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci Nov. 2016;113(46):13138-43. https://doi.org/10.1073/ pnas.1606428113.
- [14] Karamata B, Leutenegger M, Lasser T. Chapter 4 Cross Talk in Full-Field Optical Coherence Tomography in Handbook of Full-Field Optical Coherence Microscopy. In: Dubois A, editor. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard. Singapore 038988: Pan Stanford Publishing Pte. Ltd.; 2016. p. 131-82. https://doi.org/10.1201/9781315364889-5.
- [15] Goodman JW. Some fundamental properties of speckle. J Opt Soc Am 1976;66: 1145-50.
- [16] Schmitt JM, Xiang SH, Yung KM. Speckle in optical coherence tomography. J Biomed Opt 1999;4:95-105. https://doi.org/10.1117/1.429925.
- [17] Wojtkowski M, Stremplewski P, Auksorius E, Borycki D. Spatio-temporal optical coherence imaging - A new tool for in vivo microscopy. Photonics Lett Pol Jul. 2019;11(2):44. https://doi.org/10.4302/plp.v11i2.905.
- [18] Auksorius E, et al. Multimode fiber as a tool to reduce cross talk in Fourier-domain full-field optical coherence tomography. Opt Lett Feb. 2022;47(4):838. https://doi. org/10.1364/OL.449498.
- [19] Auksorius E, et al. Spatio-temporal optical coherence tomography provides full thickness imaging of the chorioretinal complex. iScience Dec. 2022;25(12): 105513. https://doi.org/10.1016/j.isci.2022.105513.
- [20] Węgrzyn P, et al. In vivo volumetric analysis of retinal vascular hemodynamics in mice with spatio-temporal optical coherence tomography. Neurophotonics Oct. 2024;11(04). https://doi.org/10.1117/1.NPh.11.4.045003.
- [21] Rollins AM, Izatt JA. Optimal interferometer designs for optical coherence tomography. Opt Lett Nov. 1999;24(21):1484. https://doi.org/10.1364/OL.24.001484.
- [22] Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express Sep. 2003;11(18): 2183. https://doi.org/10.1364/OE.11.002183.
- [23] Epworth RE. Modal noise - causes and cures. Laser Focus 1981.
- [24] Bass M. Handbook of Optics, Fiber Optics & Nonlinear Optics. Optical Society of America; 2001.
- [25] Sablowski DP, Plüschke D, Weber M, Strassmeier KG, Järvinen A. Comparing modal noise and FRD of circular and non-circular cross-section fibres. Astron Nachrichten Mar. 2016;337(3):216-25. https://doi.org/10.1002/asna.201412299.
- [26] Wojtkowski M. High-speed optical coherence tomography: Basics and applications. Appl Opt Jun. 2010;49(16):D30. https://doi.org/10.1364/AO.49.000D30.
- [27] Bradu A, Podoleanu AG. Fourier domain optical coherence tomography system with balance detection. Opt Express Jul. 2012;20(16):17522. https://doi.org/10.1364/OE.20.017522.
- [28] Kuo W-C, Lai C-M, Huang Y-S, Chang C-Y, Kuo Y-M. Balanced detection for spectral domain optical coherence tomography. Opt Express Aug. 2013;21(16):19280. https://doi.org/10.1364/OE.21.019280.
- [29] Mahadevan S, Halverson S, Ramsey L, Venditti N. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources. Astrophys J Apr. 2014;786(1):18. https://doi.org/10.1088/0004-637X/786/1/18.
- [30] Baudrand J, Walker GAH. Modal noise in high-resolution, fiber-fed spectra: A study and Simple cure. Publ Astron Soc Pac Jul. 2001;113(785):851-8. https://doi.org/10.1086/322143.
- [31] Petersburg RR, et al. Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs. Astrophys J Feb. 2018;853(2):181. https://doi.org/10.3847/1538-4357/aaa487.
- [32] F. Shevlin W. Court, High-Frequency Homogenization of Laser Illumination Through Stationary 0.22 N.A. Multimode Optical Fiber.
- [33] Szkulmowski M, Wojtkowski M. Averaging techniques for OCT imaging. Opt Express Apr. 2013;21(8):9757. https://doi.org/10.1364/OE.21.009757.
- [34] Shevlin F. Phase randomization for spatiotemporal averaging of unwanted interference effects arising from coherence. Appl Opt Aug. 2018;57(22):E6. https://doi.org/10.1364/AO.57.0000E6.
- [35] Thrane L, Gu S, Blackburn BJ, Damodaran KV, Rollins AM, Jenkins MW. Complex decorrelation averaging in optical coherence tomography: a way to reduce the effect of multiple scattering and improve image contrast in a dynamic scattering medium. Opt Lett Jul. 2017;42(14):2738. https://doi.org/10.1364/OL.42.002738.
- [36] Baumann B, et al. Signal averaging improves signal-to-noise in OCT images: But which approach works best, and when? Biomed Opt Express Nov. 2019;10(11): 5755. https://doi.org/10.1364/BOE.10.005755.
- [37] Stremplewski P, Auksorius E, Wnuk P, Kozoń Ł, Garstecki P, Wojtkowski M. In vivo volumetric imaging by crosstalk-free full-field OCT. Optica May 2019;6(5):608. https://doi.org/10.1364/OPTICA.6.000608.
- [38] Auksorius E. Fourier-domain full-field optical coherence tomography with realtime axial imaging. Opt Lett Sep. 2021;46(18):4478. https://doi.org/10.1364/OL.435104.
- [39] Borycki D, Auksorius E, Węgrzyn P, Wojtkowski M. Computational aberration correction in spatiotemporal optical coherence (STOC) imaging. Opt Lett Mar. 2020;45(6):1293. https://doi.org/10.1364/OL.384796.
- [40] Auksorius E, et al. In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography. Biomed Opt Express May 2020;11(5):2849. https://doi.org/10.1364/boe.393801.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4df24c12-e553-4a9b-b2ca-d39119d6a587
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.