PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Imaging of retinal ganglion cells and photoreceptors using Spatio-Temporal Optical Coherence Tomography (STOC-T) without hardware-based adaptive optics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We demonstrate an experimental Spatio-Temporal Optical Coherence Tomography (STOC-T) system featuring optimized illumination and an increased lateral resolution of approximately 3 µm. The integration of high-speed phase randomization with a numerical averaging process facilitates a noticeable improvement in the signal-tonoise ratio. The effectiveness of this enhancement is demonstrated through volumetric imaging of a scattering object, and it enables in vivo imaging of the human retina at the cellular level. Additionally, the experiment is supported by computational aberration-correction techniques to achieve high-resolution in vivo imaging of the human retina. The visualization of retinal cone mosaics, and ganglion cell somas was achieved through contrast enhancement during the averaging process.
Twórcy
  • International Centre for Translational Eye Research, Skierniewicka 10A, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10A, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
  • International Centre for Translational Eye Research, Skierniewicka 10A, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, Warszawa 02-093, Poland
  • Center for Physical Sciences and Technology, Sauletekio al. 3, Vilnius 10257, Lithuania
  • Center for Physical Sciences and Technology, Sauletekio al. 3, Vilnius 10257, Lithuania
  • International Centre for Translational Eye Research, Skierniewicka 10A, Warsaw 01-230, Poland
  • Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
Bibliografia
  • [1] R.G. Gregg M.A. McCall S.C. Massey Function and Anatomy of the Mammalian Retina in: Retina 2013 Elsevier pp. 360-400 10.1016/B978-1-4557-0737-9.00015-1.
  • [2] Balendra SI, Normando EM, Bloom PA, Cordeiro MF. Advances in retinal ganglion cell imaging. Eye Oct. 2015;29(10):1260-9. https://doi.org/10.1038/eye.2015.154.
  • [3] Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal ganglion cells-diversity of cell types and clinical relevance. Front Neurol May 2021;12:661938. https://doi. org/10.3389/fneur.2021.661938.
  • [4] Nusinowitz S. Anatomically Separate Rod and Cone Signaling Pathways Encyclopedia of the Eye. Elsevier; 2010. p. 67-72. https://doi.org/10.1016/B978- 0-12-374203-2.00223-2.
  • [5] Lakkis G. The ganglion cell complex and glaucoma. Pharma Mar. 2014;3:28-32.
  • [6] Liu WW, Margeta MA. Imaging retinal ganglion cell death and dysfunction in glaucoma. Int Ophthalmol Clin 2019;59(4):41-54. https://doi.org/10.1097/IIO.0000000000000285.
  • [7] Harwerth RS, Carter-Dawson L, Shen F, Smith EL, Crawford MLJ. Ganglion Cell Losses Underlying Visual Field Defects from Experimental Glaucoma. Investig Ophthalmol Vis Sci 1999;40(10):2242-50.
  • [8] Drexler W, Fujimoto J. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res Jan. 2008;27(1):45-88. https://doi.org/10.1016/j.preteyeres.2007.07.005.
  • [9] Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc Natl Acad Sci Nov. 2017;114(48):12803-8. https://doi.org/10.1073/pnas.1711734114.
  • [10] Zhang F, et al. In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics. Biomed Opt Express Aug. 2024;15 (8):4675. https://doi.org/10.1364/BOE.533249.
  • [11] Liu Z, Zhang F, Zucca K, Agrawal A, Hammer DX. Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina. Biomed Opt Express Nov. 2022;13(11):5860. https://doi.org/ 10.1364/BOE.462594.
  • [12] Auksorius E, Borycki D, Wojtkowski M. Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. Biomed Opt Express Dec. 2019;10(12):6390. https://doi.org/10.1364/BOE.10.006390.
  • [13] Hillmann D, Spahr H, Pfäffle C, Sudkamp H, Franke G, Hüttmann G. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci Nov. 2016;113(46):13138-43. https://doi.org/10.1073/ pnas.1606428113.
  • [14] Karamata B, Leutenegger M, Lasser T. Chapter 4 Cross Talk in Full-Field Optical Coherence Tomography in Handbook of Full-Field Optical Coherence Microscopy. In: Dubois A, editor. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard. Singapore 038988: Pan Stanford Publishing Pte. Ltd.; 2016. p. 131-82. https://doi.org/10.1201/9781315364889-5.
  • [15] Goodman JW. Some fundamental properties of speckle. J Opt Soc Am 1976;66: 1145-50.
  • [16] Schmitt JM, Xiang SH, Yung KM. Speckle in optical coherence tomography. J Biomed Opt 1999;4:95-105. https://doi.org/10.1117/1.429925.
  • [17] Wojtkowski M, Stremplewski P, Auksorius E, Borycki D. Spatio-temporal optical coherence imaging - A new tool for in vivo microscopy. Photonics Lett Pol Jul. 2019;11(2):44. https://doi.org/10.4302/plp.v11i2.905.
  • [18] Auksorius E, et al. Multimode fiber as a tool to reduce cross talk in Fourier-domain full-field optical coherence tomography. Opt Lett Feb. 2022;47(4):838. https://doi. org/10.1364/OL.449498.
  • [19] Auksorius E, et al. Spatio-temporal optical coherence tomography provides full thickness imaging of the chorioretinal complex. iScience Dec. 2022;25(12): 105513. https://doi.org/10.1016/j.isci.2022.105513.
  • [20] Węgrzyn P, et al. In vivo volumetric analysis of retinal vascular hemodynamics in mice with spatio-temporal optical coherence tomography. Neurophotonics Oct. 2024;11(04). https://doi.org/10.1117/1.NPh.11.4.045003.
  • [21] Rollins AM, Izatt JA. Optimal interferometer designs for optical coherence tomography. Opt Lett Nov. 1999;24(21):1484. https://doi.org/10.1364/OL.24.001484.
  • [22] Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express Sep. 2003;11(18): 2183. https://doi.org/10.1364/OE.11.002183.
  • [23] Epworth RE. Modal noise - causes and cures. Laser Focus 1981.
  • [24] Bass M. Handbook of Optics, Fiber Optics & Nonlinear Optics. Optical Society of America; 2001.
  • [25] Sablowski DP, Plüschke D, Weber M, Strassmeier KG, Järvinen A. Comparing modal noise and FRD of circular and non-circular cross-section fibres. Astron Nachrichten Mar. 2016;337(3):216-25. https://doi.org/10.1002/asna.201412299.
  • [26] Wojtkowski M. High-speed optical coherence tomography: Basics and applications. Appl Opt Jun. 2010;49(16):D30. https://doi.org/10.1364/AO.49.000D30.
  • [27] Bradu A, Podoleanu AG. Fourier domain optical coherence tomography system with balance detection. Opt Express Jul. 2012;20(16):17522. https://doi.org/10.1364/OE.20.017522.
  • [28] Kuo W-C, Lai C-M, Huang Y-S, Chang C-Y, Kuo Y-M. Balanced detection for spectral domain optical coherence tomography. Opt Express Aug. 2013;21(16):19280. https://doi.org/10.1364/OE.21.019280.
  • [29] Mahadevan S, Halverson S, Ramsey L, Venditti N. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources. Astrophys J Apr. 2014;786(1):18. https://doi.org/10.1088/0004-637X/786/1/18.
  • [30] Baudrand J, Walker GAH. Modal noise in high-resolution, fiber-fed spectra: A study and Simple cure. Publ Astron Soc Pac Jul. 2001;113(785):851-8. https://doi.org/10.1086/322143.
  • [31] Petersburg RR, et al. Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs. Astrophys J Feb. 2018;853(2):181. https://doi.org/10.3847/1538-4357/aaa487.
  • [32] F. Shevlin W. Court, High-Frequency Homogenization of Laser Illumination Through Stationary 0.22 N.A. Multimode Optical Fiber.
  • [33] Szkulmowski M, Wojtkowski M. Averaging techniques for OCT imaging. Opt Express Apr. 2013;21(8):9757. https://doi.org/10.1364/OE.21.009757.
  • [34] Shevlin F. Phase randomization for spatiotemporal averaging of unwanted interference effects arising from coherence. Appl Opt Aug. 2018;57(22):E6. https://doi.org/10.1364/AO.57.0000E6.
  • [35] Thrane L, Gu S, Blackburn BJ, Damodaran KV, Rollins AM, Jenkins MW. Complex decorrelation averaging in optical coherence tomography: a way to reduce the effect of multiple scattering and improve image contrast in a dynamic scattering medium. Opt Lett Jul. 2017;42(14):2738. https://doi.org/10.1364/OL.42.002738.
  • [36] Baumann B, et al. Signal averaging improves signal-to-noise in OCT images: But which approach works best, and when? Biomed Opt Express Nov. 2019;10(11): 5755. https://doi.org/10.1364/BOE.10.005755.
  • [37] Stremplewski P, Auksorius E, Wnuk P, Kozoń Ł, Garstecki P, Wojtkowski M. In vivo volumetric imaging by crosstalk-free full-field OCT. Optica May 2019;6(5):608. https://doi.org/10.1364/OPTICA.6.000608.
  • [38] Auksorius E. Fourier-domain full-field optical coherence tomography with realtime axial imaging. Opt Lett Sep. 2021;46(18):4478. https://doi.org/10.1364/OL.435104.
  • [39] Borycki D, Auksorius E, Węgrzyn P, Wojtkowski M. Computational aberration correction in spatiotemporal optical coherence (STOC) imaging. Opt Lett Mar. 2020;45(6):1293. https://doi.org/10.1364/OL.384796.
  • [40] Auksorius E, et al. In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography. Biomed Opt Express May 2020;11(5):2849. https://doi.org/10.1364/boe.393801.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4df24c12-e553-4a9b-b2ca-d39119d6a587
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.