PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of Sieve Size on Calorific Value and Proximate Properties of Bio-Briquette Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work aimed to observe the influence of calorific value and proximate properties in the fabrication of rice husk (RH) and coffee shell (CS) briquettes composite. Rice and coffee husks contain cellulose, hemicellulose, and lignin. These contents are necessary for the adhesive to bind the briquette (amylose and amylopectin). The raw materials were carbonized at 400 °C for 60 minutes. Variations of sieving size (60, 80, and 100 mesh) and the composition ratio of raw material CS:RH were reviewed to study their effect. Tests of density, moisture content, volatile matter content, ash content, fixed carbon content, shatter index, combustion rate, and calorific value were carried out to determine the optimum composition. The results were obtained with the best quality at a particle size of 60 mesh with the highest calorific value of 17.422 MJ/kg. It showed that the briquettes have good quality and are comparable with the standard briquette.
Rocznik
Strony
25--34
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Department of Physics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A H Nasution 105, Bandung 40614, Indonesia
  • Department of Physics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A H Nasution 105, Bandung 40614, Indonesia
  • Department of Physics, College of Engineering and Physics, King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran 3126, Saudi Arabia
  • Physics Study Program, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Jl. Dr Setiabudi 229, Bandung 40154, Indonesia
  • Department of Physics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A H Nasution 105, Bandung 40614, Indonesia
autor
  • Department of Physics, Universitas Halim Sanusi, Jl. Garut No.2, Bandung 40271, Indonesia
Bibliografia
  • 1. Afsal, A., David, R., Baiju, V., Muhammed Suhail, N., Parvathy, U., Rakhi, R.B. 2020. Experimental investigations on combustion characteristics of fuel briquettes made from vegetable market waste and saw dust. Materials Today: Proceedings, 33(40), 3826–3831.
  • 2. Agency, I.E. 2021. Global Energy Review : CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level.
  • 3. Aliah, H., Rahmah, B.L., Sawitri, A., Iman, R.N., Syarif, D.G., Setiawan, A., Nuryadin, B.W. 2023. Physical properties of briquettes composite from coffee husks (Coffea Arabica L) and Corncob (Zea Mays) for alternative fuel. In: American Institute of Physics Conference Serie, 2646(1), 060004.
  • 4. Badan Pusat Statistik. 2021. Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi 2018, 2019, 2021. In Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi 2018, 2019, 2021.
  • 5. Bhattarai, P., Sapkota, R., Ghimire, R.M. 2016. Effects of Binder and Charcoal Particle Size on the Physical and Thermal Properties of Beehive Briquettes. Proceedings of IOE Graduate Conference, 1(2), 57–63.
  • 6. Daulay, A., Gea, S. 2022. Synthesis Si nanoparticles from rice husk as material active electrode on secondary cell battery with X-Ray diffraction analysis. South African Journal of Chemical Engineering, 42, 32–41.
  • 7. de Araújo Drago, A., de Oliveira, A.F., Muniz, G.I.B., Teleken, J.G., dos Santos, A.L., de Souza Madalena, L.C., Petricosck, S.M., dos Santos, A.B. 2023. Briquettes produced from the mixture of agroindustrial residues composed of eucalyptus sawdust with turnip or corn cob cake. Acta Scientiarum. Technology, 45, e57883–e57883.
  • 8. Deglas, W., Fransiska, F. 2020. Analisis perbandingan bahan dan jumlah perekat terhadap briket tempurung kelapa dan ampas tebu. Teknologi Pangan : Media Informasi Dan Komunikasi Ilmiah Teknologi Pertanian, 11(1), 72–78.
  • 9. Espuelas, S., Marcelino, S., Echeverría, A.M., del Castillo, J.M., Seco, A. 2020. Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel, 278(February), 118310.
  • 10. Felfli, F.F., Mesa P.J.M., Rocha, J.D., Filippetto, D., Luengo, C.A., Pippo, W.A. 2011. Biomass bri- quetting and its perspectives in Brazil. Biomass and Bioenergy, 35(1), 236–242.
  • 11. Greinert, A., Mrówczyńska, M., Grech, R., Szefner, W. 2020. The use of plant biomass pellets for energy production by combustion in dedicated furnaces. Energies, 13(2), 463.
  • 12. Haidar, A., Asmara, S., Bustomi, R.A. 2022. Jurnal Agricultural Biosystem Engineering The Effect of the Mixture of Corncob Waste, Cassava Stems and Coal with Tapioca Adhesive on the Quality of Bio-coal Briquettes. 1(2), 246–257.
  • 13. Harsono, S.S., Fauzi, M., Koekoeh, R., Wibowo, K. 2022. Biomass Stove with Low Carbon Mon- oxide Emission Fueled by Solid Fuel Coffee-Husk Biopellet.
  • 14. Kaliyan, N., Morey, R.V. 2009. Densification characteristics of corn stover and switchgrass. Transactions of the ASABE, 52(3), 907–920.
  • 15. Karunanithy, C., Wang, Y., Muthukumarappan, K., Pugalendhi, S. 2012. Physiochemical Characterization of Briquettes Made from Different Feedstocks. Biotechnology Research International, 2012, 1–12.
  • 16. Kumar, J.A., Kumar, K.V., Petchimuthu, M., Iyahraja, S., Kumar, D.V. 2021. Comparative analysis of briquettes obtained from biomass and charcoal. Materials Today: Proceedings, 45(40), 857–861.
  • 17. Li, Q. 2021. The view of technological innovation in coal industry under the vision of carbon neutralization. International Journal of Coal Science and Technology, 8(6), 1197–1207.
  • 18. Liu, Y., Tan, H., Tan, Z., Cheng, X. 2023. Rice husk-derived carbon materials for aqueous Zn-ion hybrid supercapacitors. Applied Surface Science, 608, 155215.
  • 19. Lubwama, M., Yiga, V.A. 2018. Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda. Renewable Energy, 118, 43–55.
  • 20. Lubwama, M., Yiga, V.A., Muhairwe, F., Kihedu, J. 2020. Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renewable Energy, 148, 1002–1016.
  • 21. Lukas, A.G., Lombok, J.Z., Anom, I.D.K. 2018. Briquettes made with mixtures of salak seed ( Salacca zalacca ) charcoal and coconut shell charcoal and the potential as an alternative Energy Source. International Journal of Applied Engineering Research, 13(12), 10588–10592.
  • 22. McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 37–46.
  • 23. Mitan, N.M.M., & Sa’adon, M.F.R. 2019. Temperature Effect on Densification of Banana Peels Briquette. Materials Today: Proceedings, 19, 1403–1407.
  • 24. Mortada, W.I., Mohamed, R.A., Monem, A.A.A., Awad, M.M., Hassan, A.F. 2023. Effective and Low-Cost Adsorption Procedure for Removing Chemical Oxygen Demand from Wastewater Using Chemically Activated Carbon Derived from Rice Husk. Separations, 10(1), 43.
  • 25. Nayak, P.P., Datta, A.K. 2023. Synthesis and Characterization of Si/SiO2/SiC Composites Through Carbothermic Reduction of Rice Husk-based Silica. Silicon, 1–10.
  • 26. Nazari, M.M., San, C.P., Atan, N.A. 2019. Combustion performance of biomass composite briquette from rice husk and banana residue. Int. J. Adv. Sci. Eng. Inf. Technol, 9, 455–460.
  • 27. Quartey, E.T. 2011. Briquetting agricultural waste as an energy source in Ghana. Recent Researches in Environment, Energy Planning and Pollution, 200–204.
  • 28. Rhén, C., Öhman, M., Gref, R., Wästerlund, I. 2007. Effect of raw material composition in woody biomass pellets on combustion characteristics. Biomass and Bioenergy, 31(1), 66–72.
  • 29. Saeed, A.A.H., Harun, N.Y., Bilad, M.R., Afzal, M.T., Parvez, A.M., Roslan, F.A.S., Rahim, S.A., Vinayagam, V.D., Afolabi, H.K. 2021. Moisture content impact on properties of briquette produced from rice husk waste. Sustainability (Switzerland), 13(6).
  • 30. Sette Jr.C.R., Hansted, A.L.S., Novaes, E., Lima, P.A.F.E, Rodrigues, A.C., Santos, D.R. de S., Yamaji, F.M. 2018. Energy enhancement of the eucalyptus bark by briquette production. Industrial Crops and Products, 122, 209–213.
  • 31. Setter, C., Ataíde, C.H., Mendes, R.F., de Oliveira, T.J.P. 2021. Influence of particle size on the physico-mechanical and energy properties of briquettes produced with coffee husks. Environmental Science and Pollution Research, 28(7), 8215–8223.
  • 32. Setter, C., Silva, F.T.M., Assis, M.R., Ataíde, C.H., Trugilho, P.F., Oliveira, T.J.P. 2020. Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel, 261(October 2019).
  • 33. Sugebo, B. 2022. A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Materials for Renewable and Sustainable Energy, 1–13.
  • 34. Thabuot, M., Pagketanang, T., Panyacharoen, K., Mongkut, P., Wongwicha, P. 2015. Effect of applied pressure and binder proportion on the fuel properties of holey bio-briquettes. Energy Procedia, 79, 890–895.
  • 35. Wang, C., Zhang, S., Wu, S., Sun, M., Lyu, J. 2020. Multi-purpose production with valorization of wood vinegar and briquette fuels from wood sawdust by hydrothermal process. Fuel, 282(July), 118775.
  • 36. Wirabuana, A.D., Alwi, R.S. 2021. Influence of starch binders composition on properties of biomomass briquettes from Durian peel (Durio kutejensis Becc). AIP Conference Proceedings, 2349(June).
  • 37. Wu, S., Zhang, S., Wang, C., Mu, C., Huang, X. 2018. High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes. Fuel Processing Technology, 171, 293–300.
  • 38. Zhang, G., Sun, Y., Xu, Y. 2018. Review of briquette binders and briquetting mechanism. Renewable and Sustainable Energy Reviews, 82, 477–487.
  • 39. Zubairu, A., Gana, S.A. 2014. Production and characterization of briquette charcoal by carbonization of agro-waste. Energy Power, 4(2), 41–47.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4dee2552-dec9-473b-bf54-02e86661a722
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.