PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of sodium hexametaphosphate on the flotation separation of lepidolite and quartz: MD study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study employed sodium hexametaphosphate (SHMP) as a depressant for quartz to achieve selective flotation separation of lepidolite. Micro-flotation and artificial mixed-mineral tests confirmed that the introduction of SHMP successfully facilitated the separation of lepidolite and quartz under weak acid conditions. The MD simulations revealed that hydroxylation of non-bridging oxygen atoms on the quartz surface influenced the adsorption of dodecylamine (DDA), while it had no impact on the adsorption of sodium hexametaphosphate (SHMP). Additionally, SHMP was found to form hydrogen bonds with hydroxyl groups present on the quartz surface, thereby enhancing its adsorption capacity and indirectly promoting a higher degree of surface hydroxylation to impede DDA adsorption, thus preserving the hydrophilic nature of the quartz surface. Conversely, the dissolution of K+ in the [Si6-nAlnO6] (n=0, 1, 2) rings on the lepidolite surface in an aqueous environment leads to a negative charge on lepidolite. This negatively charged state presents obstacles for SHMP adsorption onto the lepidolite surface; however, it facilitates strong attraction and firm adsorption of positively charged DDA within the ring cavities of lepidolite, resembling an "anchor". The adsorption test revealed that, following treatment with SHMP, a substantial amount of DDA remained adsorbed onto the lepidolite, while only a negligible quantity was observed on the quartz surface. Consequently, the introduction of SHMP enables effective inhibition of quartz under conditions characterized by low hydroxylation levels on its surface (weak acid or neutral), thereby facilitating the production of high-quality lepidolite products.
Rocznik
Strony
art. no. 192882
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Jiangxi Province Key Laboratory of Efficient Development and Utilization of Rare Metal Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
  • Jiangxi Province Key Laboratory of Efficient Development and Utilization of Rare Metal Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336000, China
autor
  • Jiangxi Province Key Laboratory of Efficient Development and Utilization of Rare Metal Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336000, China
autor
  • Jiangxi Province Key Laboratory of Efficient Development and Utilization of Rare Metal Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336000, China
autor
  • Jiangxi Province Key Laboratory of Efficient Development and Utilization of Rare Metal Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336000, China
  • Jiangxi Province Key Laboratory of Efficient Development and Utilization of Rare Metal Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
autor
  • China Nerin Engineering Co., Ltd., China
Bibliografia
  • AI, G., YAN, H., WU, Y., LI, X., 2014. Experimental Study on Mineral Processing of Comprehensive Recovery from a Ta-Nb Lepidolite Ore. Non-metallic Mines, 37 (04): 4-6.
  • BAI, Y., XU, M., WEN, W., ZHU, S., MO, W., YAN, P., 2023. Synergistic mechanism of dodecylamine/octanol mixtures enhancing lepidolite flotation from the self-aggregation behaviors at the air/liquid interface. Physicochemical Problems of Mineral Processin. 59(6), 176510.
  • CHEN, J., CHU, X., CHENG, Y., SHU, Q., LING, Y., SHANG, H., MIN, F., 2023. Application of molecular dynamics simulations in interface interaction of clay: Current status and perspectives. Asia-Pac J Chem Eng. 18(5): e2955.
  • CHOI, J., KIM, W., CHAE, W., 2012. Electrostatically Controlled Enrichment of Lepidolite via Flotation, Materials Trans., 53, 12, 2191-2194.
  • GUAN, Z., JIAO, F., WANG, X. QIN, W., FU, L., ZHANG, Z., LI, WEI., 2024. New insights of inorganic phosphate inhibitors for flotation separation of calcium-bearing minerals. J. Cent. South Univ. 31, 796–812.
  • GUO, X., ZHANG, J., TIAN, Q., 2021. Modeling the potential impact of future lithium recycling on lithium demand in China: A dynamic SFA approach. Renewable and Sustainable Energy Reviews. 137, 110461.
  • HEINZ, H., LIN, T., KISHORE M., EMAMI, F., 2013. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the interface force field. Langmuir. 29, 1754-1765.
  • HU, Y., CHEN X., WANG Y., 2003. Selective action of phosphates on bauxite and kaolinite flotation. The Chinese Journal of Nonferrous Metals, (01): 222-228.
  • HUANG, Z., SHUAI, S., WANG, H., LIU, R., ZHANG, S., CHENG, C., HU, Y., YU, X., HE, G., FU, W., 2022. Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector. Separation and Purification Technology. 282, 119122.
  • HUANG, Z., LI, W., HE, G., SHEN, L., CHEN, X., SHUAI, S., LI, F., WANG, H., LIU, R., ZHANG, S., CHENG, C., OUYANG, L., YU, X., FU, W., 2022. Adsorption Mechanism of Amidoxime Collector on the Flotation of Lepidolite: Experiment and DFT Calculation. Langmuir 38 (50), 15858-15865.
  • IRANNAJAD, M. EJTEMAEI, M. GHARABAGHI, M. 2009. The effect of reagents on selective flotation of smithsonite–calcite–quartz, Minerals Engineering. 22, 9–10, 766-771.
  • KORBEL, C. FILIPPOVA, I.V. FILIPPOV, L.O. 2023. Froth flotation of lithium micas – A review. Minerals Engineering. 192, 107986.
  • LIAO, R., WEN, S., LIU, JIAN., FENG, Q., 2022. Flotation separation of fine smithsonite from calcite using sodium hexametaphosphate as the depressant in the Na2S-Pb(Ⅱ)-KIAX system. Separation and Purification Technology. 295, 121245.
  • LIU, K., 2023. Research Progress in Flotation Collectors for Lepidolite Mineral: An Overview. Mineral Processing and Extractive Metallurgy Review. 1–15.
  • LIU, Z., JIAO, F., QIN, W., WEI, Q., 2022. Collision–attachment law of lepidolite, feldspar and quartz with bubbles in the combined cationic and anionic collector system. Physicochemical Problems of Mineral Processing. 58(6), 155324.
  • LIU, C., MIN, F., LIU, L., CHEN, J. 2019. Density Functional Theory Study of Water Molecule Adsorption on the α-Quartz (001) Surface with and without the Presence of Na+, Mg2+, and Ca2+. ACS Omega., 4(7), 12711–12718.
  • LIU, J., PENG, B., ZHAO, L., BAI, F., LEI, Z., 2021. Selection of an Appropriate Depressant in Flotation Separation of Molybdenum Oxide from Fluorapatite. Minerals. 11, 1110.
  • LIU, Z., SUN, Z., YU, J., 2015. Investigation of dodecylammonium adsorption on mica, albite and quartz surfaces by QM/MM simulation. Molecular Physics. 113(22), 3423–3430.
  • LU, J., SUN, M., YUAN, Z., QI, S., TONG, Z., LI, L., MENG, Q., 2019. Innovative insight for sodium hexametaphosphate interaction with serpentine. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 560, 35-41.
  • MENG, Q., YUAN, Z., XU, Y., DU, Y., 2019. The effect of sodium silicate depressant on the flotation separation of fine wolframite from quartz. Separation Science and Technology, 54(8), 1400–1410.
  • PENG, W., ZHANG, L., QIU, Y., SONG, S., 2016. Depression effect of corn starch on muscovite mica at different pH values. Physicochemical Problems of Mineral Processing. 52(2), 780-788.
  • TADESSE, B., MAKUEI, F., ALBIJANIC, B., DYER, L., 2019. The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering. 131, 170-184.
  • TIAN, M., GAO, Z., JI, B., FAN, R., LIU, R., CHEN, P., SUN, W., HU, Y., 2018. Selective Flotation of Cassiterite from Calcite with Salicylhydroxamic Acid Collector and Carboxymethyl Cellulose Depressant. Minerals. 8, 316.
  • WANG, J.; GAO, Z.; GAO, Y.; HU, Y.; SUN, W. 2016. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Miner. Eng. 98, 261–263.
  • WANG, L., SHEN, L., SUN, W., ZHANG, X., ZHANG, Y., WANG, Y., 2022. Selective flotation separation of smithsonite from dolomite by using sodium hexametaphosphate as a depressant. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 651, 129621.
  • WANG, L., SUN, W. LIU, R., 2014. Mechanism of separating muscovite and quartz by flotation. Cent. South Univ. 21, 3596–3602.
  • WEI, Q., FENG, L., DONG, L., JIAO, F., QIN, W., 2021. Selective co-adsorption mechanism of a new mixed collector on the flotation separation of lepidolite from quartz. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 612, 125973.
  • VIECELI, N., DURÃO, F. O. GUIMARÃES, C., NOGUEIRA, C. A. PEREIRA, M. F.C. MARGARIDO, F., 2016. Graderecovery modelling and optimization of the froth flotation process of a lepidolite ore. International Journal of Mineral Processing. 157, 184-194.
  • XIAO, C., WANG, BIN., ZHAO, D., WANG C., 2023. Comprehensive investigation on Lithium batteries for electric and hybrid-electric unmanned aerial vehicle applications. Thermal Science and Engineering Progress. 38, 101677.
  • YANG, Z., LI, M., LIN, Y., YAO, W., WU, Y., CUI, R., 2023. Floatability of Fluorite and Calcite Inhibited by Sodium Hexametaphosphate via Ultrasonic Activation. Minerals. 13, 1504.
  • ZHANG, H., LIN, S., GUO, Z., SUN, W., ZHANG, C., 2023. Selective separation mechanism of hematite from quartz by anionic reverse flotation: Implications from surface hydroxylation. Applied Surface Science. 614, 156056.
  • ZHANG, Z., WEI, Q., JIAO, F., QIN, W., 2023. Role of nanobubbles on the fine lepidolite flotation with mixed cationic/anionic collector. Powder Technology. 427, 118785.
  • ZHANG, H., ZHOU, F., YU, H., LIU, M., 2021. Double roles of sodium hexametaphosphate in the flotation of dolomite from apatite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 626. 127080.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ded1d79-4bcd-46c9-bcca-7128c92d7d67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.