PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of the mechanism of the fouling in microgranular adsorptive filtration

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie mechanizmu zatykania porów membrany (foulingu) w przypadku zastosowania filtracji μGAF
Języki publikacji
EN
Abstrakty
EN
The application of microgranular adsorptive filtration (μGAF) has been successfully used in conjunction with membrane filtration. It proves to be efficient not only in removal of natural organic matter (NOM) but also it significantly reduces the extent of fouling. There are a few mathematical models evaluated to understand the underlying mechanism of fouling. This paper describes a method of predicting filtration capacities using constant flow datasets collected when μGAF was applied. The results suggest that the behaviour of fouling in microgranular adsorptive filtration system varies between different filtration operations and natural water quality. In analysed case the mechanism of pores blocking can be described by the complete blocking mechanism.
PL
Mikro-ziarnowa adsorpcyjna filtracja (μGAF) jest z powodzeniem stosowana w połączeniu z filtracją membranową. Metoda ta jest skuteczna nie tylko w usuwaniu naturalnych substancji organicznych (NOM), ale również znacznie zmniejsza stopień zatkania się podczas filtracji porów membrany (proces foulingu). Aby zrozumieć zjawisko foulingu, opracowano kilka modeli matematycznych. W niniejszej pracy opisano mechanizm blokowania porów podczas μGAF filtracji. Uzyskane wyniki dają podstawy do przypuszczeń, że w zależności od zastosowanego systemu oraz właściwości chemicznych i fizycznych filtrowanej wody różne modele matematyczne mogą mieć zastosowanie. W analizowanym przypadku mechanizm blokowania porów najlepiej opisuje model całkowitego zatykania porów.
Wydawca
Rocznik
Tom
Strony
137--140
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Wrocław University of Life Sciences, Faculty of Environmental Engineering and Geodesy, Institute of Environmental Engineering, pl. Grunwaldzki 24, 50-363 Wrocław, Poland
Bibliografia
  • ARYANTI N., WARDHANI D.H., SUPANDI S. 2016. Flux profiles and mathematical modeling of fouling mechanism for ultrafiltration of konjac glucomannan. Scientific Study and Research, Chemistry and Chemical Engineering, Biotechnology, Food Industry. Vol. 17. Iss. 2 p. 125–137.
  • BAKE R.W. 2004. Membrane technology and application. Chichester, West Sussex PO19 8SQ, England. John Wiley and Sons Ltd, The Atrium, Southern Gate. ISBN 9780470854457 pp. 538.
  • BENJAMIN M.M., LAWLER D.F. 2013. Water quality engineering: Physical / chemical treatment processes. John Wiley and Sons Ltd. ISBN 978-1-118-16965-0 pp. 904.
  • CAI Z., KIM J., BENJAMIN M.M. 2008. NOM removal by adsorption and membrane filtration using heated aluminum oxide particles. Environmental. Science and Technology. Vol. 42. Iss. 2 p. 619–623.
  • FIELD R. 2010. Fundamentals of fouling. In: Membranes for water treatment. Vol. 4. Ed. K.-V. Peinemann, S.P. Nunes. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim p. 1–23.
  • GIJIU C.L., DIMA R., RALUCA, ISOPESCU R.D. 2012. Membrane fouling in dead-end microfiltration of yeast suspensions [online]. Revista De Chimie. Vol. 63. No. 1 [Access 12.05.2017]. Available at: http://www.revistadechimie.ro/pdf/GIJIU%20C%201%2012.pdf
  • HALE M.B., DANIELS W.F. 1961. A preliminary study of depth filtration at a constant rate. Biotechnology and Bioengineering. Vol. 3. Iss. 2 p. 139–150.
  • HERMIA J. 1982. Constant pressure blocking filtration laws – Application to power-law non-Newtonian fluids. Institution of Chemical Engineers. Transactions. Vol. 60. No. 3 p. 183–187
  • HLAVACEK M., BOUCHET F. 1993. Constant flowrate blocking laws and an example of their application to deadend microfiltration of protein solutions. Journal of Membrane Science. Vol. 82. Iss. 3 p. 285–295.
  • HO C.C., ZYDNEY A.L. 2000. A combined pore blockage and cake filtration model for protein fouling during microfiltration. Journal of Colloid and Interface Science. Vol. 232. Iss. 2 p. 389–399.
  • KIM J., CAI Z., BENJAMIN M.M. 2008. Effects of adsorbents on membrane fouling by natural organic matter. Journal of Membrane Science. Vol. 310. Iss. 1–2 p. 356–364.
  • KIM J., CAI Z., BENJAMIN M.M. 2010. NOM fouling mechanisms in a hybrid adsorption/ membrane system. Journal of Membrane Science. Vol. 349. Iss. 1–2 p. 35–43.
  • KIM J., SHI W., YUAN Y., BENJAMIN M.M. 2007. A serial filtration investigation of membrane fouling by natural organic matter. Journal of Membrane Science. Vol. 294. Iss. 1–2 p. 115–126. DOI 10.1016/j.memsci.2007.02. 020.
  • KONIECZNY K., RAFA J. 2000. Modeling of the membrane filtration process of natural waters. Polish Journal of Environmental Studies. Vol. 9. No. 1 p. 57–63.
  • LE-CLECH P., CHEN V., FANE T.A. 2006. The application of constant temperature anemometry to membrane processes. Journal of Membrane Science. Vol. 284. Iss. 1–2 p. 416–423.
  • LIU J.C.W. 2015. Effects of operational parameters on microgranular adsorptive filtration (μGAF). PhD Thesis. University of Washington pp. 115.
  • MALCZEWSKA B. 2016. Evaluation of effectiveness of natural organic compounds removal from water in hybrid processes. Journal of Land Water Development. No. 30 p. 81–85. DOI 10.1515/jwld-2016-0024.
  • MALCZEWSKA B., BENJAMIN M.M. 2016. Efficacy of hybrid adsorption/membrane pretreatment for low. Water Research. Vol. 99 p. 263–271.
  • MALCZEWSKA B., LIU J., BENJAMIN M.M. 2015. Virtual elimination of MF and UF fouling by adsorptive precoat filtration. Journal of Membrane Science. Vol. 479 p. 159–164.
  • MARCINKOWSKI P., PINIEWSKI M., KARDEL I., SRINIVASAN R., OKRUSZKO T. 2016. Challenges in modelling of water quantity and quality in two contrasting meso-scale catchments in Poland. Journal of Water and Land Development. No. 31 p. 97–111. DOI 10.1515/jwld-2016-0040.
  • MIODUSZEWSKI W., QUERNER E.R., KOWALEWSKI Z. 2014. The analysis of the impact of small retention on water resources in the catchment. Journal of Water and Land Development. No. 23 p. 41–51.
  • POLYAKOV YU.S., MAKSIMOV E.D. POLYAKOV V.S. 1999. On the design of microfilters. Theoretical Foundations of Chemical Engineering. Vol. 339. Iss. 1 p. 64–71.
  • RAJCA M. 2011. NOM fouling mechanism during ultrafiltration. Architecture Civil Engineering Environment. Vol. 1 p. 113–119.
  • SAMPATH M. SHUKLA A., RATHORE A.S. 2014. Modelling of filtration processes—microfiltration and depth filtration for harvest of a therapeutic protein expressed in Pichia pastoris at constant pressure. Bioengineering. Vol. 1. p. 260–277.
  • SCHALLER J., DREWS A., KRAUME M. 2006. Analyses of filtration mechanisms in membrane bioreactors and test cells by mathematical modelling. 16th International Conference Process Engineering and Chemical Plant Design. Berlin 9–13.10.2006. Berlin. Technische Universität p. 33–42.
  • SU W., CHEN C., ZHU Y., YAND W., DAI H. 2015. Fouling characteristics of dissolved organic matter in papermaking process water on polyethersulfone Ultrafiltation membranes. BioResources. Vol. 10. No. 3 p. 5906–5919.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4de2bc2c-ac89-456e-a4d7-13932ce28344
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.