PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Some examples of solutions to an inverse problem for the first-passage place of a jump-diffusion process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report some additional examples of explicit solu- tions to an inverse first-passage place problem for one-dimensional diffusions with jumps, introduced in a previous paper. If X(t) is a one-dimensional diffusion with jumps, starting from a random position η 2 [a, b], let be τa,b the time at which X(t) first exits the interval (a, b), and πa = P(X(τa,b) ≤ a) the probability of exit from the left of (a, b). Given a probability q 2 (0, 1), the problem consists in finding the density g of η (if it exists) such that πa = q; it can be seen as a problem of optimization.
Rocznik
Strony
31--42
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Dipartimento di Matematica, Università “Tor Vergata”, via della Ricerca Scientifica, I-00133 Rome, Italy
Bibliografia
  • Abundo, M. (2000) On first-passage-times for one-dimensional jump-diffusion processes. Prob. Math.Statis. 20(2), 399–423.
  • Abundo, M. (2010) On the First Hitting Time of a One-dimensional Diffusion and a Compound Poisson Process. Methodol. Comput. Appl. Probab. 12, 473–490.
  • Abundo, M. (2012) An inverse first-passage problem for one-dimensional diffusion with random starting point. Stat. and Probab. Letters 82, 7–14. See also Erratum: Stat. and Probab. Letters, 82(3), 705.
  • Abundo, M. (2013a) Solving an inverse first-passage-time problem for Wiener process subject to random jumps from a boundary. Stochastic Anal. Appl. 31: 4, 695–707.
  • Abundo, M. (2013b) Some randomized first-passage problems for one-dimensional diffusion processes. Scientiae Mathematicae Japonicae 76(1), 33–46.
  • Abundo, M. (2013c) The double-barrier inverse first-passage problem for Wiener process with random starting point. Stat. and Probab. Letters 83, 168–176.
  • Abundo, M. (2014) One-dimensional reflected diffusions with two boundaries and an inverse first-hitting problem. Stochastic Anal. Appl. 32, 975–991. DOI: 10.1080/07362994.2014.959595
  • Abundo, M. (2015) An overview on inverse first-passage-time problems for one-dimensional diffusion processes. Lecture Notes of Seminario Interdisciplinare di Matematica 12, 1–44. http://dimie.unibas.it/site/home/info/documento3012448.html
  • Abundo, M. (2018) The Randomized First-Hitting Problem of Continuously Time-Changed Brownian Motion. Mathematics 6(6), 91, 1–10. https://doi.org/10.3390/math6060091
  • Abundo, M. (2019) An inverse first-passage problem revisited: the case of fractional Brownian motion, and time-changed Brownian motion. Stochastic Anal. Appl. 37, 5, 708–716, https://doi.org/10.1080/07362994.2019.1608834
  • Abundo, M. (2020) An inverse problem for the first-passage place of some diffusion processes with random starting point. Stochastic Anal. Appl. 38, 6, 1122–1133, https://doi.org/10.1080/07362994.2020.1768867
  • Gupta, A.K. and Nadarajah, S. (eds.), (2004) Handbook of Beta Distribution and Its Applications. CRC Press, Boca Raton, https://doi.org/10.1201/9781482276596.
  • Jackson, K., Kreinin, A. and Zhang, W. (2009) Randomization in the first hitting problem. Stat. and Probab. Letters 79, 2422–2428.
  • Kou, S.G. and Wang, H. (2003) First passage times of a jump diffusion process. Adv. Appl. Probab. 35(2), 504–531.
  • Lanska, V. and Smiths C.E. (1989) The effect of a random initial value in neural first-passage-time models. Math. Biosci. 93, 191–215.
  • Lefebvre, M. (2019a) Moments of First-Passage Places for Jump-Diffusion Processes. Sankhya A, 1–9. https://doi.org/10.1007/s13171-019-00181-4
  • Lefebvre, M. (2019b) Minimizing the time spent in an interval by a Wiener process with uniform jumps. Control and Cybernetics 48, 3, 407–415.
  • Lefebvre, M. (2020) First-passage problems for diffusion processes with state-dependent jumps. Communications in Statistics - Theory and Methods. Published online: 02 Jul 2020. https://doi.org/10.1080/03610926.2020.1784433
  • Lefebvre, M. (2022) The inverse first-passage-place problem for Wiener processes. Stochastic Anal. Appl., 40 (1), 96–102. https://doi.org/10.1080/07362994.2021.1889382
  • Tuckwell, H.C. (1976) On the first-exit time problem for temporally homogeneous Markov processes. J. Appl. Probab. 13, 39–48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4de181a4-8c08-4084-a1e0-85a863369e27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.