PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Smoothed Particle Hydrodynamics Method in Metal Processing: An Overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian formula-based non-grid computational method for simulating fluid flows, solid deformation, and fluid structured systems. SPH is a method widely applied in many fields of science and engineering, especially in the field of materials science. It solves complex physical deformation and flow problems. This paper provides a basic overview of the application of the SPH method in metal processing. This is a very useful simulation method for reconstructing flow patterns, solidification, and predicting defects, limitations, or material destruction that occur during deformation. The main purpose of this review article is to give readers better understanding of the SPH method and show its strengths and weaknesses. Studying and promoting the advantages and overcoming the shortcomings of the SPH method will help making great strides in simulation modeling techniques. It can be effectively applied in training as well as for industrial purposes.
Rocznik
Strony
67--80
Opis fizyczny
Bibliogr. 107 poz., il., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Kraków, Poland
Bibliografia
  • [1] Monaghan, J.J. (2005). Smoothed Particle Hydrodynamics. Reports on Progress in Physics. 68(8), 1703-1759. DOI: 10.1088/0034-4885/68/8/R01.
  • [2] Cleary, P.W., Ha, J., Vladimir, A. & Nguyen, T. (2002). Flow modeling in casting processes. Applied Mathematical Modeling. 26, 171-190. DOI: 10.1016/S0307-904X(01)00054-3.
  • [3] Joseph, J.M., Herbert, E.H. & Grae Worster, M. (2005). Solidification using smoothed particle hydrodynamics. Journal of Computational Physics. 206(2), 684-705. DOI:10.1016/j.jcp.2004.11.039.
  • [4] Cleary, P.W., Prakash, M. & Ha, J. (2006). Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. Journal of Materials Processing Technology. 177, 41-48. DOI: 10.1016/j.jmatprotec.2006.03.237.
  • [5] Cleary, P.W., Ha, J., Prakash, M. & Nguyen, T. (2006). 3D SPH flow predictions and validation for high pressure die casting of automotive components. Applied Mathematical Modeling. 30, 1406-1427. DOI: 10.1016/j.apm.2006.03.012.
  • [6] Rabczuk, T., Xiao, S.P. & Sauer, M. (2006). Coupling of mesh-free methods with finite elements basic concepts and test results. Communications in Numerical Methods in Engineering. 22(10), 1031-1065. DOI: 10.1002/cnm.871.
  • [7] Prakash, M. & Cleary, P.W. (2007). Optimization of ingot casting wheel design using SPH simulations. Progress in Computational Fluid Dynamics. 7(2/3/4), 101-110. DOI:10.1504/PCFD.2007.013002.
  • [8] Cleary, P.W., Prakash, M., Ha, J., Stokes, N. & Scott, C. (2007). Smooth particle hydrodynamics: status and future potential. Progress in Computational Fluid Dynamics. 7(2/3/4), 70-90. DOI: 10.1504/PCFD.2007.013000.
  • [9] Oger, G., Doring, M., Alessandrini, B. & Ferrant, P. (2007). An improved SPH method-towards higher order convergence. Journal of Computational Physics. 225(2), 1472-1492. DOI: 10.1016/j.jcp.2007.01.039.
  • [10] Violeau, D. & Issa, R. (2007). Numerical modelling of complex turbulent free-surface flows with the SPH method. International Journal for Numerical Methods in Fluids. 53, 277-304. DOI: 10.1002/fld.1292.
  • [11] Limido, J., Espinosaa, C., Salau ̈na, M. & Lacome, J.L. (2007). SPH method applied to high speed cutting modelling. International Journal of Mechanical Sciences. 49(7), 898-908. DOI: 10.1016/j.ijmecsci.2006.11.005.
  • [12] Zhang, M. (2007). Smoothed Particle Hydrodynamics in Materials Processing: Code Development and Applications. State University of New York at Stony Brook. ProQuest Dissertations Publishing. 1-123. UMI Number: 3299712.
  • [13] Liu, M.B. & Liu, G.R. (2010). Smoothed Particle Hydrodynamics (SPH): an overview and recent developments. Archives of Computational Methods in Engineering. 17(1), 25-76. DOI: 10.1007/s11831-010-9040-7.
  • [14] Limido, J., et al. (2011). Metal cutting modelling SPH approach. International Journal of Machining and Machinability of Materials. 9(3-4), 177-196. DOI:10.1504/IJMMM.2011.039645.
  • [15] Takamiya, H., Okada, H., Sakai, Y. & Fukui, Y. (2011). Smoothed particle hydrodynamics analysis on semi-solid metal forming process. Japan Journal of Industrial and Applied Mathematics. 28(1), 183-203. DOI: 10.1007/s13160-011-0028-y.
  • [16] Cleary, P.W., Prakash, M., Das, R. & Ha, J. (2012). Modelling of metal forging using SPH. Applied Mathematical Modeling 36(8), 3836-3855. DOI:0.1016/j.apm.2011.11.019.
  • [17] Vijaykumar, A. (2012). Smoothed Particle Hydrodynamics Simulation for continuous casting. Master of Science Thesis Stockholm, Sweden.
  • [18] Faqih, R.A., Naa, C.F. (2013). Three-Dimensional Smoothed Particle Hydrodynamics Simulation for Liquid Metal Solidification Process. arXiv: 1309.4234v1. https://doi.org/10.48550/arXiv.1309.4234.
  • [19] Hojny, M. (2020). A sequential FEM-SPH model of the heating-remelting-cooling of steel samples in the Gleeble 3800 thermo-mechanical simulation system. Archives of Foundry Engineering. 20(3), 60-68. DOI: 10.24425/afe.2020.133331.
  • [20] Farrokhpanah, A., Bussmann, M. & Mostaghimi, J. (2017). New smoothed particle hydrodynamics (SPH) formulation for modelling heat conduction with solidification and melting. Numerical Heat Transfer, Part B: Fundamentals. 71(4), 299-312. DOI: 10.1080/10407790.2017.1293972.
  • [21] Shadlooa, M.S., Oger, G. & Le Touzé, D. (2016). Smoothed particle hydrodynamics method for fluid flows, towards industrial applications- motivations, current state, and challenges. Computers and Fluids. 136, 11-34. DOI:10.1016/j.compfluid.2016.05.029.
  • [22] Wang, Z.B., Chen, R., Wang, H., Liao, Q., Zhu, X. & Li, S.Z. (2016). An overview of smoothed particle hydrodynamics for simulating multiphase flow. Applied Mathematical Modeling. 40(23-24), 9625-9655. DOI: 10.1016/j.apm.2016.06.030.
  • [23] Hu, H. & Eberhard, P. (2017). Thermo-mechanically coupled conduction mode laser welding Simulations Using Smoothed Particle Hydrodynamics. Computational Particle Mechanics. 4(4), 473-486. DOI: 10.1007/s40571-016-0140-5.
  • [24] Islam, M.R.I., Peng, C. & Eslamian, A. (2019). Numerical modelling of metal forming by SPH with Multi-GPU Acceleration. SAE Technical Paper. 01-1085. DOI:10.4271/2019-01-1085.
  • [25] Greto, G. & Kulasegaram, S. (2020). An efficient and stabilized SPH method for large strain metal plastic deformations. Computational Particle Mechanics. 7(3), 523-539. DOI: 10.1007/s40571-019-00277-6.
  • [26] Bohdal, L. (2016). The application of the smoothed particle hydrodynamics (SPH) method to the simulation and analysis of blanking process. Mechanika. 22(5), 380-387. DOI.10:5755/j01. mech. 22.5.13459.
  • [27] Shadloo, M.S., Zainali, A., Yildiz, M. & Suleman, A. (2012). A robust weakly compressible SPH method and its comparison with an incompressible SPH. International journal for numerical methods in engineering. International Journal For Numerical Methods In Engineering. 89, 939-956. DOI: 10.1002/nme.3267.
  • [28] Zahedi, A., Li, S., Roy, A., Babitsky, V., Silberschmidt, V.V. (2012). Application of smooth-particle hydrodynamics in metal machining. Published under licence by IOP Publishing Ltd. DOI: 10.1088/1742-6596/382/1/012017.
  • [29] Xu, J.X., Wang, J. (2014). Interaction methods for the SPH parts (multiphase flows, solid bodies) in LS-DYNA. 13th International LS-DYNA Users Conference. 1-12.
  • [30] Buruchenko, S.K., Schäfer, C.M. & Maindl, T.I. (2017). Smooth particle hydrodynamics GPU-acceleration tool for asteroid fragmentation simulation. Published by Elsevier Ltd. Procedia Engineering. 204, 59-66. DOI: 10.1016/j.proeng.2017.09.726.
  • [31] Asai, M., Aly, A.M., Sonoda, Y. & Sakai, Y. (2012). A stabilized incompressible SPH method by relaxing the density invariance condition. Journal of Applied Mathematics. Volume 2012, Article ID 139583, 24 pages. DOI:10.1155/2012/139583.
  • [32] Niu, W., et al. (2018). Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method. The International Journal of Advanced Manufacturing Technology. 95(1-4), 905-919. DOI: 10.1007/s00170-017-1253-6.
  • [33] Cleary, P.W., Ha, J. (1999). Three-dimensional modeling of high pressure die casting. International Journal of Cast Metals Research. 12(6), 357-365.
  • [34] Cleary, P.W., Ha, J. (2011). Modelling the high pressure die casting process using SPH. CRC for Cast Metals Manufacturing (CAST) CSIRO Mathematical and Information Sciences, Victoria, Australia.
  • [35] Cleary, P.W. & Das, R. (2008). The Potential for SPH modelling of solid deformation and fracture. Modelling and Computational Aspects of Inelastic Media. 11, 287-296. DOI: 10.1007/978-1-4020-9090-5_26.
  • [36] Prakash, M. & Cleary, P.W. (2015). Modelling highly deformable metal extrusion using SPH. Computation Particle Mechanics. 2(1), 19-38. DOI 10.1007/s40571-015-0032-0.
  • [37] Liu, M.B., Zhang, Z.L. & Feng, D.L. (2017). A density adaptive SPH method with kernel gradient correction for modeling explosive welding. Computational Mechanics. 60(3), 513-529. DOI: 10.1007/s00466-017-1420-5.
  • [38] Zhanga, Z.L. & Liua, M.B. (2019). Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. Journal of Manufacturing Processes. 41, 208-220. DOI: 10.1016/j.jmapro.2019.03.039.
  • [39] Zhang, Z.L., Feng, D.L. & Liua, M.B. (2018). Investigation of explosive welding through whole process modeling using a density adaptive SPH method. Journal of Manufacturing Processes. 35, 169-189. DOI: 10.1016/j.jmapro.2018.08.004.
  • [40] Zhang, Z.L., Ma, T., Liu, M.B. & Feng, D. (2019). Numerical study on high-velocity impact welding using a modified SPH method. International Journal of Computational Methods. 16(02) 1846001. DOI: 10.1142/S0219876218460015.
  • [41] Masumi, I.,Yu, N., Seiichiro, I., Yu, F., Masaya, S. (2015). Numerical simulation of joining process in a tig welding system using incompressible SPH method. Quarterly Journal of the Japan Welding Society. 33(2), 32-38.
  • [42] Bagheri, B., Abdollahzadeh, A., Abbasi, M. & Kokabi, A.H. (2020). Numerical analysis of vibration effect on friction stir welding by smoothed particle hydrodynamics (SPH). The International Journal of Advanced Manufacturing Technology. 110, 209-228. DOI: 10.1007/s00170-020-05839-0.
  • [43] Liu, Z., Xiu, L., Wu, J., Lv, G. & Ma, J. (2019). Numerical simulation on residual stress eliminated by shot peening using SPH method. Fusion Engineering and Design. 147, 111231. DOI: 10.1016/j.fusengdes.2019.06.004.
  • [44] Das, R. & Cleary, P.W. (2016). Three-dimensional modeling of coupled flow dynamics, heat transfer and residual stress generation in arc welding processes using the mesh-free SPH method. Journal of Computational Science. 16, 200-216. DOI: 10.1016/j.jocs.2016.03.006.
  • [45] Das, R. & Cleary, P.W. (2015). Novel application of the mesh-free SPH method for modelling thermo-mechanical responses in arc welding. International Journal of Mechanics and Materials Design. 11(3), 337-355. DOI: 10.1007/s10999-014-9279-5.
  • [46] Li, Z., Wang, X., Yang, H., Ni, P., Li, F. & Liu, H. (2021). Numerical studies on laser impact welding: Smooth particle hydrodynamics (SPH), Eulerian, and SPH-Lagrange. Journal of Manufacturing Processes. 68, 43-56. DOI: 10.1016/j.jmapro.2021.07.021.
  • [47] Masumi, I., et al. (2014). Numerical simulation of a weld formation in a TIG welding using an incompressible SPH method. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society. 32(4), 213-222. DOI:10.2207/qjjws.32.213.
  • [48] Kakizaki, S., Watanabe, M. & Kumai, S. (2011). Simulation and experimental analysis of metal jet emission and weld interface morphology in impact welding. Materials Transactions. 52(5), 1003-1008. DOI: 10.2320/matertrans.L-MZ201128.
  • [49] Ito, M., Izawa, S., Fukunishi, Y., Shigeta, M. (2012). SPH simulation of gas arc welding process. Seventh international conference on computational fluid dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012.
  • [50] Hu, H., Fetzer, F., Berger, P. & Eberhard, P. (2016). Simulation of laser welding using advanced particle methods. GAMM-Mitt. 39(2), 149-169. DOI: 10.1002/gamm.201610010.
  • [51] Émurlaeva, Y.Y., et al. (2019). Welding window: comparison of Deribas’ and Wittman’s approaches and SPH simulation results. Metals. 9(12), 1323. DOI: 10.3390/met9121323.
  • [52] Bagheri, B., Abbasi, M., Abdolahzadeh, A. & Kokabi, A.H. (2020). Numerical analysis of cooling and joining speed effects on friction stir welding by smoothed particle hydrodynamics (SPH). Archive of Applied Mechanics. 90(10), 2275-2296. DOI: 10.1007/s00419-020-01720-4.
  • [53] Timesli, A., et al. (2011). Numerical model based on SPH method to simulate friction stir welding. Revue de Mécanique Appliquée et Théorique. 2(5), 537-546.
  • [54] Lee, T., et al. (2019). Wave formation in impact welding: Study of the Cu-Ti system. CIRP Annals – Manufacturing Technology. 68(1), 261-264. DOI: 10.1016/j.cirp.2019.04.058.
  • [55] Jeske, S.R., Simon, M.S., Simenov, O., Kruska, J., Mokrov, O., Sharma, R., Reisgen, U. & Bender, J. (2022). Quantitative evaluation of SPH in TIG spot welding. Computational Particle Mechanics. DOI: 10.1007/s40571-022-00465-x.
  • [56] Pan, W., Li, D., Tartakovsky, A.M., Ahzi, S., Kraisheh, & M., Khaleel, M. (2013). A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy. International Journal of Plasticity. 48, 189-204. DOI: 10.1016/j.ijplas.2013.02.013.
  • [57] Aizawa, Y., Nishiwaki, J., Harada, Y., Muraishi, S. & Kumai, S. (2016). Experimental and numerical analysis of the formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces. Journal of Manufacturing Processes. 24, 100-106. DOI: 10.1016/j.jmapro.2016.08.002.
  • [58] Chu, Q., Zhang, M., Li, J. & Yan, C. (2017). Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Materials Science & Engineering A. 689, 323-331. DOI: 10.1016/j.msea.2017.02.075.
  • [59] Liang, H., Luo, N., Shen, T., Sun, X, Fan, X, & Cao, Y. (2020). Experimental and numerical simulation study of Zr-based BMG/Al composites manufactured by underwater explosive welding. Journal of Materials Research and Technology. 9(2), 1539-1548. DOI: 10.1016/j.jmrt.2019.11.079.
  • [60] Nassiri, A., Vivek, A., Abke, T., et al. (2017). Depiction of interfacial morphology in impact welded Ti/Cu bimetallic systems using smoothed particle hydrodynamics. Applied Physics Letters. 110(23). DOI: 10.1063/1.4984742.
  • [61] Cleary, P.W. (2010). Extension of SPH to predict feeding, freezing, and defect creation in low pressure die casting. Applied Mathematical Modeling. 34(11), 3189-3201. DOI: 10.1016/j.apm. 2010.02.012.
  • [62] Cleary, P.W., Savage, G., Ha, J. & Prakash, M. (2014). Flow analysis and validation of numerical modelling for a thin-walled high-pressure die casting using SPH. Computational Particle Mechanics. 1(3), 229-243. DOI: 10.1007/s40571-014-0025-4.
  • [63] Niu, X., Zhao, J. & Wang, B. (2019). Application of smooth particle hydrodynamics (SPH) method in gravity casting shrinkage cavity prediction. Computational Particle Mechanics. 6(4), 803-810. DOI:10.1007/s40571-019-00263-y.
  • [64] Cleary, P.W., Ha, J., Prakash, M. & Nguyen, T. (2010). Short shots and industrial case studies: Understanding fluid flow and solidification in high pressure die casting. Applied Mathematical Modeling. 34(8), 2018-2033. DOI:10.1016/j.apm.2009.10.015.
  • [65] Kazama, M., Suwa, T. & Maeda, Y. (2019). Modeling and computation of casting process by particle method. JMEPEG. 28(7), 3941-3949. DOI: 10.1007/s11665-019-03979-3.
  • [66] Shadloo, M.S., Oger, G. & Touzé, D.L. (2016). Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Computers and Fluids. 136, 11-34. DOI: 10.1016/j.compfluid.2016.05.029.
  • [67] Hu, M. Y., Cai, J.J., Li, N., Yu, H.L., Zhang, Y., Sun, B., Sun, W.L. (2018). Flow modeling in high-pressure die-casting using SPH model. International Journal of Metalcasting. 12(1), 97-105. DOI: 10.1007/s40962-017-0144-9.
  • [68] Prakash, M., Ha, J., Cleary, P.W., Grandfield, J. (2006). Preliminary SPH modelling of oxide formation during the mould filling phase in DC casting of extrusion billets. Fifth international conference on CFD in the process industries CSIRO, Melbourne, Australia 13-15 December 2006. pp. 1-7.
  • [69] Cleary, P.W., Ha, J., Prakash, M. & Nguyen, T. (2005). Simulation of casting complex shaped objects using SPH. TMS (The Minerals, Metals, & Materials Society). pp. 317-326.
  • [70] Lewis, R.W, Ransing, R.S., Pao, W.K.S., Kulasegaram, K. & Bonet, J. (2004). Alternative techniques for casting process simulation. International Journal of Numerical Methods for Heat & Fluid Flow. 14(2), 145-166. DOI: 10.1108/09615530410513782.
  • [71] Suwa, T., et al. Simulation model of casting processes and its applications by Smoothed Particle Hydrodynamics method.
  • [72] Park, B.L. & Lee, S.W. (2018). Molten metal flow analysis of casting process using SPH method. Journal of the Korean Society of Visualization. 16(1), 54-60. DOI: 10.5407/JKSV.2018.16.1.054.
  • [73] Lysenko, T., Morozov, Y., Kreitser, K. & Kozishkurt, E. (2020). Using the SPH mehtod for modeling the crystallization process of aluminum alloys. World Science (RS Global). 1, 3(55), 26-33. DOI: 10.31435/rsglobal_ws/31032020/6981.
  • [74] Ellingsen, K., Coudert, T. & M'Hamdi, M. (2015). SPH based modeling of oxide and oxide film formation in gravity die castings. Materials Science and Engineering. 84(1), 012064. DOI: 10.1088/1757-899X/84/1/012064.
  • [75] Tokunaga, T., Motoyama, Y., Iwamoto, K. & Okane, T. (2020). Thermo-fluid simulation using particle method based on hand-pouring motion in casting process. The International Journal of Advanced Manufacturing Technology.111(1-2), 371-382. DOI: 10.1007/s00170-020-06117-9.
  • [76] Xu, X. & Yu, P. (2017). Modeling and simulation of injection molding process of polymer melt by a robust SPH method. Applied Mathematical Modeling. 48, 384-409. DOI: 10.1016/j.apm.2017.04.007
  • [77] Hirata, N., Zulaida, Y.M. & Anzai, K. (2012). Application of particle method to the casting process simulation. Materials Science and Engineering. 33(1), 012114. DOI: 10.1088/1757-899X/33/1/012114.
  • [78] Tong, M. & Browne, D.J. (2014). An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modeling thermo-capillary flow. International Journal of Heat and Mass Transfer. 73, 284-292. DOI: 10.1016/j.ijheatmasstransfer.2014.01.064.
  • [79] Vijaykumar, A. (2012). Smoothed particle hydrodynamics simulation for continuous casting. Master’s Thesis in scientific computing. Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci.
  • [80] Afrasiabi, M., Klippel, H., Roethlin, M. & Wegener, K. (2021). An improved thermal model for SPH metal cutting simulations on GPU. Applied Mathematical Modeling. 100, 728-750. DOI: 10.1016/j.apm.2021.08.010.
  • [81] Gąsiorek, D. (2013). The application of the smoothed particle hydrodynamics (SPH) method and the experimental verification of cutting of sheet metal bundles using a guillotine. Journal of Theoretical and Applied Mechanics. 51(4), 1053-1065.
  • [82] Bohdal, L., Kukielka, L., Świłło, S., Radchenko, A.M. & Kułakowska, A. (2019). Modeling and experimental analysis of shear-slitting process of light metal alloys using FEM, SPH, and vision-based methods. AIP Conference Proceedings 2078, 020060; DOI:10.1063/1.5092063.
  • [83] Villumsen, M.F. & Fauerholdt, T.G. (2008). Simulation of metal cutting using smooth particle hydrodynamics. LS-DYNA Anwenderforum, Bamberg. 53(4-6), 17-36.
  • [84] Islam, M.R.I., Bansal, A. & Peng, C. (2020). Numerical simulation of metal machining process with Eulerian and Total Lagrangian SPH. Engineering Analysis with Boundary Elements. 117, 269-283. DOI: 10.1016/j.enganabound. 2020.05.007.
  • [85] Lampropoulos, A.D. & Manolakos, D.E. (2021). Application of SPH method for modeling of metal extrusion process. Computational Particle Mechanics. 9(2), 335-351. DOI: 10.1007/s40571-021-00414-0.
  • [86] Prakash, M., Cleary, P.W. (2006). Modeling of cold metal extrusion using SPH. Fifth International Conference on CFD in the Process Industries, CSIRO, Melbourne, Australia. pp. 1-7.
  • [87] Qamar, S.Z., Chekotu, J.C., Maharbi, M.A. & Alam, K. (2019). Shape complexity in metal extrusion: definitions, classification, and applications. Arabian Journal for Science and Engineering. 44(9), 7371-7384. DOI: 10.1007/s13369-019-03886-8.
  • [88] Li, L., Gupta, V., Li, X., Reynolds, A.P., Grant, G. & Soulami, A. (2021). Mesh free simulation and experimental validation of extreme thermomechanical conditions in friction stir extrusion. Computational Particle Mechanics. 9, 789–809. DOI: 10.1007/s40571-021-00445-7.
  • [89] Ha, J., Cleary, P.W., Prakash, M. (2006). SPH modelling of metal forging. fifth international conference on CFD in the process industries CSIRO, Melbourne, Australia. pp. 1-6.
  • [90] Li, G., Sidibe, K. & Liu, G. (2004). Meshfree method for 3D bulk-forming analysis with lower-order integration scheme. Engineering Analysis with Boundary Elements. 28, 1283-1292. DOI: 10.1016/j.enganabound.2003.11.005.
  • [91] Manson, A.C. (2019). Modelling close-die forging operations using total lagrangian smooth particle hydrodynamics.
  • [92] Hoseinpour, B., Amanifard, N. & Basti, A. (2013). Simulation of cold rolling process using smoothed particle hydrodynamics (SPH). International Journal of Engineering, Transactions B: Applications. 26(5), 515-522. DOI: 10.5829/idosi.ije.2013.26.05b.08.
  • [93] Xiao, N., Zhou, X.P. & Gong, Q.M. (2017). The modelling of rock breakage process by TBM rolling cutters using 3D FEM-SPH coupled method. Tunnelling and Underground Space Technology. 61, 90-103. DOI: 10.1016/j.tust.2016.10.004.
  • [94] Bohdal, Ł., Kukiełka, L., Legutko, S., Patyk, R. & Radchenko, A.M. (2020). Modeling and experimental analysis of shear-slitting of AA6111-T4 aluminum alloy sheet. Materials. 13(14), 3175. DOI: 10.3390/ma13143175.
  • [95] Muhammad, N., Rogers, B.D. & Li, L. (2013). Understanding the behaviour of pulsed laser dry and wet micromachining processes by multi-phase smoothed particle hydrodynamics (SPH) modelling. Journal of Physics D: Applied Physics. 46(9), 095101. DOI: 10.1088/0022-3727/46/9/095101.
  • [96] Abidou, D., Yusoff, N., Nazri, N., Awang, M.A.O., Hassane, M.A. & Sarhan, A.A.D. (2017). Numerical simulation of metal removal in laser drilling using symmetric smoothed particle hydrodynamics. Precision Engineering. 49, 69-77. DOI: 10.1016/j.precisioneng.2017.01.012 014.
  • [97] Bohdal, Ł., Tandecka, K. & Kałdunski, P. (2017). Numerical simulation of shear slitting process of grain oriented silicon steel using SPH method. Acta Mechanica et Automatica. 11(4), 333-338. DOI 10.1515/ama-2017-0052.
  • [98] Shah, D., Alexey, A.N. & Volkov, N. (2020). Simulations of deep drilling of metals by continuous wave lasers using combined smoothed particle hydrodynamics and ray-tracing methods. Applied Physics A. 126(2), 1-12. DOI: 10.1007/s00339-019-3202-8.
  • [99] Afrasiabia, M., Chatzia, E. & Wegener, K. (2018). A Particle strength exchange method for metal removal in laser drilling. Procedia CIRP. 72, 1548-1553. DOI: 10.1016/j.procir.2018.03.287.
  • [100] Boldyrev, I.S. & Topolov, D.I. (2020). Twist drilling SPH simulation for thrust force and torque prediction. Materials Science and Engineering. 971(2), 022044. DOI: 10.1088/1757-899X/971/2/022044.
  • [101] Jianjun, L. & Wenfeng, Z. (2019). Numerical simulation of the roller hemming process based on pressure-viscosity effect. The International Journal of Advanced Manufacturing Technology. 105(1-4), 1023-1039. DOI:10.1007/s00170-019-04237-5.
  • [102] Sayegh, Z.E., Gindy, M.E., Johansson, I. & Öijer, F. (2018). Improved tire-soil interaction model using FEA-SPH simulation. Journal of Terramechanics. 78, 53-62. DOI:10.1016/j.jterra.2018.05.001.
  • [103] Ba, K. & Gakwaya, A. (2018). Thermomechanical total Lagrangian SPH formulation for solid mechanics in large deformation problems. Computer Methods in Applied Mechanics and Engineering. 342, 458-473. DOI: 10.1016/j.cma.2018.07.038.
  • [104] Afrasiabi, M.,Klippel, H., Roethlin, M. & Wegener, K. (2021). Smoothed particle hydrodynamics simulation of orthogonal cutting with enhanced thermal modeling. Applied Sciences (Switzerland). 11(3), 1020. DOI: 10.3390/app11031020.
  • [105] Ba, K. (2019). Hot Compression Tests Using Total Lagrangian SPH Formulation in Energy-Based Framework. In C. G. Buzea, M. Agop, & L. Butler (Eds.), Progress in Relativity. IntechOpen. DOI: 10.5772/intechopen.85930.
  • [106] Fraser, K., Georges, L.S. & Kiss, L.I. (2016). A mesh-free solid-mechanics approach for simulating the friction stir-welding process. Joining Technologies. DOI:10.5772/64159.
  • [107] Hojny, M., Żaba, K., Dębiński, T. & Porada, J. (2020). The use of the CUDA architecture to increase the computing effectiveness of the simulation module of a ceramic mould quality forecasting system. Archives of Foundry Engineering. 20(4),5-12.DOI: 10.24425/afe.2020.133341.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4de05ebb-9f3c-471e-8f35-9acbd284ab6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.