PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of static and dynamic methods based on knee kinematics to determine optimal saddle height in cycling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bike-fitting methods based on knee kinematics have been proposed to determine optimal saddle height. The Holmes method recommends that knee angle be between 25° and 35° when the pedal is at bottom dead centre in static. Other authors advocate knee angle of 30–40° during maximum knee extension while pedalling. Although knee angle would be 5–10° greater at bottom dead centre during pedalling, no study has reported reference values in this condition. The purpose of this study was to compare these three methodologies on knee, hip, and ankle angles and to develop new dynamic reference range at bottom dead centre. Methods: Twenty-six cyclists volunteered for this experiment and performed a pedalling test on their personal road or mountain bike. Knee, hip, and ankle angles were assessed by two-dimensional video analysis. Results: Dynamic knee angle was 8° significantly greater than static knee angle when the pedal was at bottom dead centre. Moreover, dynamic knee angle with the pedal at bottom dead centre was 3° significantly greater than dynamic knee angle during maximum knee extension. The chosen methodology also significantly impacted hip and ankle angles under most conditions. Conclusions: The results allow us to suggest a new range of 33–43° when the pedal is at bottom dead centre during pedalling. Thus, this study defines clearly the different ranges to determine optimal saddle height in cycling according to the condition of measurement. These findings are important for researchers and bike-fitting professionals to avoid saddle height adjustment errors that can affect cyclists’ health and performance.
Rocznik
Strony
93--99
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Laboratory of Performance, Health, Metrology, and Society, University of Reims Champagne-Ardenne, Reims, France
  • Laboratory of Performance, Health, Metrology, and Society, University of Reims Champagne-Ardenne, Reims, France
  • Laboratory of Performance, Health, Metrology, and Society, University of Reims Champagne-Ardenne, Reims, France
  • Laboratory of Performance, Health, Metrology, and Society, University of Reims Champagne-Ardenne, Reims, France
Bibliografia
  • [1] BERTUCCI W.M., ROGIER S., REISER R.F., Evaluation of aerodynamic and rolling resistances in mountain-bike field conditions, J. Sports Sci., 2013, 31 (14), 1606–1613, DOI: https://doi.org/10.1080/02640414.2013.792945.
  • [2] BINI R.R., ROSSATO M., DIEFENTHAELE F., CARPES F.P., Pedaling cadence effects on joint mechanical work during cycling, Isokinet. Exerc. Sci., 2010, 18 (1), 7–13, DOI: 10.3233/IES-2010-0361.
  • [3] BINI R.R., TAMBORINDEGUY A.C., MOTA C.B., Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling, J. Sport Rehab., 2010, 19 (3), 301–314, DOI: https://doi.org/10.1123/jsr.19.3.301.
  • [4] BINI R.R., HUME P.A., CROFT J.L., Effects of bicycle saddle height on knee injury risk and cycling performance, Sports Med., 2011, 41 (6), 463–476, DOI: https://doi.org/10.2165/11588740-000000000-00000.
  • [5] BINI R.R., HUME P.A., CROFT J.L., KILDING A., Pedal force effectiveness in Cycling: a review of constraints and training effects, J. Sci. Cycling, 2013, 2 (1), 11–24.
  • [6] BINI R.R., HUME P.A., A comparison of static and dynamic measures of lower limb joint angles in cycling: application to bicycle fitting, Hum. Mov., 2016, 17 (1), 36–42, DOI: 10.1515/humo-2016-0005.
  • [7] DE VEY MESTDAGH K., Personal perspective: in search of an optimum cycling posture, Appl. Ergon., 1998, 29 (5), 325–334, DOI: https://doi.org/10.1016/S0003-6870(97)00080-X.
  • [8] FARRELL K.C., REISINGER K.D., TILLMAN M.D., Force and repetition in cycling: possible implications for iliotibial band friction syndrome, The Knee, 2003, 10 (1), 103–109, DOI:https://doi.org/10.1016/S0968-0160(02)00090-X.
  • [9] FERRER-ROCA V., BESCÓS R., ROIG A., GALILEA P., VALERO O., GARCÍA-LÓPEZ J., Acute effects of small changes in bicycle saddle height on gross efficiency and lower limb kinematics, J. Strength Cond. Res., 2014, 28 (3), 784–791, DOI: 10.1519/JSC.0b013e3182a1f1a9.
  • [10] FERRER-ROCA V., ROIG A., GALILEA P., GARCIA-LOPEZ J., Influence of saddle height on lower limb kinematics in welltrained cyclists: static vs. dynamic evaluation in bike fitting, J. Strength Cond. Res., 2012, 26 (11), 3025–3029, DOI: 10.1519/JSC.0b013e318245c09d.
  • [11] FONDA B., SARABON N., LI F.X., Validity and reliability of different kinematics methods used for bike fitting, J. Sports Sci., 2014, 32 (10), 940–946, DOI: https://doi.org/10.1080/02640414.2013.868919.
  • [12] FONDA B., SARABON N., BLACKLOCK R., LI F.X., Effects of changing seat height on bike handling, J. Sci. Cycling, 2014, 3 (2), 19, DOI: 10.13140/2.1.1828.5445.
  • [13] GENZLING C., Le dossier de la position, Géométrie d’une pléiade [Bike fitting file, Geometry of a pleiad], In Le Cycle, 1980, 53 (32), 32–36.
  • [14] HAMLEY E.Y., THOMAS V., Physiological and postural factors in the calibration of the bicycle ergometer, J. Physiol., 1967, 191 (2), 55–56.
  • [15] HOLLIDAY W., FISHER J., THEO R., SWART J., Static versus dynamic kinematics in cyclists: A comparison of goniometer, inclinometer and 3D motion capture, Eur. J. Sports Sci., 17 (9), 2017, 1129–1142, DOI: https://doi.org/10.1080/17461391.2017.1351580.
  • [16] HOLMES J.C., PRUITT A.L., WHALEN N.J., Lower extremity overuse in bicycling, Clin. Sports Med., 1994,13 (1), 187–205.
  • [17] JOHNSTON T.E., Biomechanical considerations for cycling interventions in rehabilitation, Phys. Ther., 2007, 87 (9), 1243–1252, DOI: https://doi.org/10.2522/ptj.20060210.
  • [18] KAUTZ S.A., FELTNER M.E., COYLE E.F., BAYLOR A.M., The pedaling technique of elite endurance cyclists: changes with increasing workload at constant cadence, J. Appl. Biomech., 1991, 7 (1), 29–53, DOI: https://doi.org/10.1123/ijsb.7.1.29.
  • [19] MILLOUR G., DUC S., PUEL F., BERTUCCI W., Comparison of two static methods of saddle height adjustment for cyclists of different morphologies, Sports Biomech., 2019, 1–16, DOI: 10.1080/14763141.2018.1556324.
  • [20] PEVELER W.W., POUNDER J.D., BISHOP P.A., Effects of saddle height on anaerobic power production in cycling, J. Strength Cond. Res., 2007, 21(4), 1023–1027, DOI: 10.1519/R-20316.1.
  • [21] PEVELER W.W., Effects of saddle height on economy in cycling, J. Strength Cond. Res., 2008, 22(4), 1355–1359, DOI: 10.1519/JSC.0b013e318173dac6.
  • [22] PEVELER W.W., SHEW B., JOHNSON S., PALMER T.G., A kinematic comparison of alterations to knee and ankle angles from resting measures to active pedaling during a graded exercise protocol, J. Strength Cond. Res., 2012, 26 (11), 3004–3009, DOI: 10.1519/JSC.0b013e318243fdcb.
  • [23] PRICE D., DONNE B., Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man, J. Sports Sci., 1997, 15(4), 395–402, DOI: 10.1080/026404197367182.
  • [24] PRIEGO QUESADA J.I., JACQUES T.C., BINI R.R., CARPES F.P., Importance of static adjustment of knee angle to determine saddle height in cycling, J. Sci. Cycling, 2016, 5 (1), 26–31.
  • [25] PRIEGO QUESADA J.I., PÉREZ-SORIANO P., LUCAS-CUEVAS A.G., SALVADOR PALMER R., CIBRIÁN ORTIZ DE ANDA R.M., Effect of bike-fit in the perception of comfort, fatigue and pain, J. Sports Sci., 2017, 35(14), 1459–1465, DOI: https://doi.org/10.1080/02640414.2016.1215496.
  • [26] PRIEGO QUESADA J.I., KERR Z.Y., BERTUCCI W.M., CARPES F.P., The categorization of amateur cyclists as research participants: findings from an observational study, J. Sports Sci., 2018, 36 (17), 2018–2024, DOI: https://doi.org/10.1080/02640414.2018.1432239.
  • [27] SILBERMAN M.R., WEBNER D., COLLINA S., SHIPLE B.J., Road bicycle fit, Clinical J. Sports Med., 2005, 15(4), 271–276, DOI: 10.1097/01.jsm.0000171255.70156.da.
  • [28] VERMA R., HANSEN E.A., DE ZEE M., MADELEINE P., Effect of seat positions on discomfort, muscle activation, pressure distribution and pedal force during cycling, J. Electromyogr. Kines., 2016, 27, 78–86, DOI: https://doi.org/10.1016/j.jelekin.2016.02.003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4dcd84f3-5e16-4d3d-8dc5-8f3cc6e64196
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.