Identyfikatory
Warianty tytułu
State of the art on allocation in LCA and proposals for changes in ISO 14044
Języki publikacji
Abstrakty
Praca obejmuje przegląd literatury związanej z alokacją obciążeń środowiskowych oraz poszerzeniem systemu wyrobu w ocenie cyklu życia. Tematyka była wielokrotnie poruszana przez ośrodki europejskie i światowe, jednak bogactwo literatury i postęp w dziedzinie metodyki stwarzają potrzebę usystematyzowania tego zagadnienia. W pracy porównano różne podejścia i metodologie stosowane w analizach cyklu życia procesów wielofunkcyjnych proponowane w publikacjach naukowych, przewodnikach i podręcznikach. Zalecenia związane z problemem wielofunkcyjności procesów i systemów zidentyfikowane w literaturze przeanalizowano pod kątem zgodności z hierarchią preferowanych rozwiązań zalecaną w normie ISO 14044. Przeanalizowano zależność wyboru rozwiązania wielofunkcyjności od podejścia do analizy, m.in.: analiz opisowych (attributional) oraz skutkowych (consequential). Omówiono zagadnienia związane ze stosowaniem alokacji w oparciu o zależności fizyczne i ekonomiczne oraz poszerzenia systemu (emisji unikniętych, substytucji), przedstawiono ich zalety i wady. Stwierdzono, że w źródłach literaturowych wybór rozwiązania wielofunkcyjności zazwyczaj jest zależny od celu i kontekstu analizy. Wykazano, że „Procedura alokacji” normy ISO 14044 w świetle literatury przedmiotu wymaga uzupełnienia. W pracy zaproponowano zmiany i uzupełnienia w normie ISO 14044 wynikające z przeglądu literatury przedmiotu.
A literature review is presented in relation to the system expansion and the allocation of the environmental burdens in life cycle assessment (LCA). Many research centers in Europe and the world undertook subject of multi-functionality. Diversity of solutions and approaches is a barrier to an LCA practitioner who do not specializes in the subject related to multifunctionality and allocation. Wealth of literature and the progress made in the methodology create the need to systematize this issues. In the paper, various approaches and methodologies used in the life cycle analyses of multi-functional processes proposed in scientific papers, guides and manuals were compared. Recommendations related to the problem of multifunctionality of processes and systems which were identified in the literature were analyzed for compliance with the hierarchy of preferred solutions recommended in the ISO 14044, which arranges different solutions of multi-functionality from the most to the least recommended basing on the possibility of its implementation. Dependence of a choice of multifunctionality solution on approach to analysis: attributional analysis (ALCA) and consequential analysis (CLCA) was analyzed. Issues related to the use, advantages and disadvantages of an allocation on the basis of physical and economic relationships and of the system expansion (avoided emissions, substitution) were discussed closely. It is found on the basis of literature that in practice a procedure of solving multi-functionality mainly depends on context of analysis and the classification of the analyzed system. It has been shown that “Allocation procedure” of the ISO 14044 in relation to the literature is out of date and needs to be completed and changes. Finally, proposed changes and additions to the ISO 14044 resulting from the literature review were presented.
Czasopismo
Rocznik
Tom
Strony
97--119
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
autor
- Główny Instytut Górnictwa, Zakład Oszczędności Energii i Ochrony Powietrza, pl. Gwarków 1, 40-166 Katowice
Bibliografia
- [1] PN-EN ISO 14044:2009 Zarządzanie środowiskowe. Ocena cyklu życia. Wymagania i wytyczne. PKN, Warszawa 2009.
- [2] Kurzydło M., Możliwość zastosowania techniki LCA do oceny wpływu na środowisko odpadów przemysłowych i energetycznych, Inżynieria i Ochrona Środowiska 2014, 17(4), 597-617.
- [3] Lewandowska A., Środowiskowa ocena cyklu życia produktu na przykładzie wybranych typów pomp przemysłowych, Wydawnictwo Akademii Ekonomicznej w Poznaniu, Poznań 2006.
- [4] Kowalski Z., Kulczycka J., Góralczyk M., Ekologiczna ocena cyklu życia procesów wytwórczych (LCA), WN PWN, Warszawa 2007.
- [5] Kulczycka J., Góralczyk M., Koneczny K., Przewrocki P., Wąsik A., Ekologiczna ocena cyklu życia (LCA) nową techniką zarządzania środowiskowego, IGSMiE PAN, Kraków 2001.
- [6] Adamczyk W., Ekologia wyrobów. Jakość - Cykl życia - Projektowanie, Polskie Wydawnictwo Ekonomiczne, Warszawa 2004.
- [7] Kłos Z., Kurczewski P., Kasprzak J., Środowiskowe charakteryzowanie maszyn i urządzeń, Wyd. Politechniki Poznańskiej, Poznań 2005.
- [8] Górzyński J., Podstawy analizy środowiskowej wyrobów i obiektów, Wydawnictwa Naukowo- -Techniczne, Warszawa 2007.
- [9] Strykowski W., Lewandowska A., Wawrzynkiewicz Z., Noskowiak A., Cichy W., Środowiskowa ocena cyklu życia (LCA) wyrobów drzewnych, Instytut Technologii Drewna, Poznań 2006.
- [10] Burchart-Korol D., Zastosowanie oceny cyklu życia w analizie procesów przemysłowych, Problemy Ekologii 2009, 13, 300-305.
- [11] Zamagni A., Buttol P., Porta P.L., Buonamici R., Masoni P., Guinee J., Heijungs R., Ekvall T., Bersani R., Bieńkowska A., Pretato U., Critical review of the current research needs and limitations related to ISO-LCA practice, D7, CALCAS 2008.
- [12] Wardenaar T., van Ruijven T., Mendoza Beltran A., Vad K., Guinee J., Heijungs R., Differences between LCA for analysis and LCA for policy: a case study on the consequences of allocation choices in bio-energy policies, The International Journal of Life Cycle Assessment 2012, 17(8), 1059-1067.
- [13] Brankatschk G., Finkbeiner M., Application of the Cereal Unit in a new allocation procedure for agricultural life cycle assessments, Journal of Cleaner Production 2014, 73, 72-79.
- [14] Weidema B., Has ISO 14040/44 failed its role as a standard for life cycle assessment? Journal of Industrial Ecology 2014, 18(3).
- [15] ETSI TS 103 199 V1.1.1 Environmental Engineering (EE); Life Cycle Assessment (LCA) of ICT equipment, networks and services; general methodology and common requirements, European Telecommunications Standards Institute, 2011.
- [16] ENVIFOOD Protocol, Environmental Assessment of Food and Drink Protocol, European Food Sustainable Consumption and Production Round Table (SCP RT), Working Group 1, Brussels, Belgium 2013.
- [17] Pelletier N., Allacker K., Pant R., Manfredi S., The European Commission Organisation Environmental Footprint method: comparison with other methods, and rationales for key requirements, The International Journal of Life Cycle Assessment 2014, 19, 387-404.
- [18] Pelletier N., Ardente F., Brandao M., De Camillis C., Pennington D., Rationales for and limitations of preferred solutions for multi-functionality problems in LCA: is increased consistency possible? Int. J. literature review, as well as content from online exchanges in LCA for a such as the Life Cycle Assess 2015, 20, 74-86.
- [19] Nicholson A.L., Olivetti E.A., Gregory J.R., Field F.R., Kirchain R.E. End-of-life LCA allocation methods: Open loop recycling impacts on robustness of material selection decisions, Sustainable Systems and Technology 2009. ISSST ’09. IEEE International Symposium on, 2009, 1-6.
- [20] LCALIST http://lists.pre-sustainability.com - lista dyskusyjna
- [21] ILCD Handbook. International Reference Life Cycle Data System, General Guide for Life Cycle Assessment - Detailed guidance. European Commission - Joint Research Centre - Institute for Environment and Sustainability, Luxembourg: Publications Office of the European Union 2010.
- [22] Weidema B.P., Market aspects in product life cycle inventory methodology, Journal of Cleaner Production 1993, 1(3-4), 161-166.
- [23] Tillman A.M., Significance of decision-making for LCA methodology, Environmental Impact Assessment Review 2000, 20, 113-123.
- [24] Frischknecht R., Stucki M., Scope-dependent modelling of electricity supply in life cycle assessments, The International Journal of Life Cycle Assessment 2010, 15(8), 806-816.
- [25] De Camillis C., Brandao M., Zamagni A., Pennington D. (eds), Sustainability assessment of future-oriented scenarios: a review of data modelling approaches in Life Cycle Assessment, JRC 2013.
- [26] Sonnemann G., Vigon B., Valdivia S., Rack M., Global Guidance Principles for Life Cycle Assessment Databases. A Basis for Greener Processes and Products. ‘Shonan Guidance Principles’, UNEP SETAC Life Cycle Initiative, United Nations Environment Programme, 2011.
- [27] Frischknecht R., Allocation in life cycle inventory analysis for joint production, The International Journal of Life Cycle Assessment 2000, 5(2), 85-95.
- [28] Ekvall T., Weidema B.P., System boundaries and input data in consequential life cycle inventory analysis, The International Journal of Life Cycle Assessment 2004, 9(3), 161-171.
- [29] Earles J.M., Halog A., Consequential life cycle assessment: a review, The International Journal of Life Cycle Assessment 2011, 16(5), 445-453.
- [30] Zamagni A., Guinee J., Heijungs R., Masoni P., Raggi A., Lights and shadows in consequential LCA, The International Journal of Life Cycle Assessment 2012, 17(8), 904-918.
- [31] Ekvall T., Limitations of Consequential LCA, InLCA/LCM 2002 E-Conference.
- [32] Weidema B.P., Market information in life cycle assessment, Danish Environmental Protection Agency. Copenhagen 2003 (Environmental Project No. 863).
- [33] Thomassen MA., Dalgaard R., Heijungs R., Boer I., Attributional and consequential LCA of milk production, The International Journal of Life Cycle Assessment 2008, 13, 339-349.
- [34] Finnveden G., Hauschild M.Z., Ekvall T., Guinee J., Heijungs R., Hellweg S., Koehler A., Pennington D., Suh S., Recent developments in Life Cycle Assessment, Journal of Environmental Management 2009, 91, 1-21.
- [35] Brander M., Tipper R., Hutchison C., Davis G., Consequential and Attributional Approaches to LCA: a Guide to Policy Makers with Specific Reference to Greenhouse Gas LCA of Biofuels, Econometrica press, 2008.
- [36] Schmidt J.H., Thrane M., Merciai S., Dalgaard R., Inventory of country specific electricity in LCA - consequential and attributional scenarios, Methodology report v. 2.0 LCA consultants, Aalborg, Denmark 2011; dostępny na stronie: http://lca-net.com/ (dostęp marzec 2016).
- [37] Śliwińska A., Ilościowa ocena obciążeń środowiskowych w procesie skojarzonego wytwarzania metanolu i energii elektrycznej (rozprawa doktorska), Główny Instytut Górnictwa, Katowice 2013
- [38] Frischknecht R., Life Cycle Inventory Analysis for Decision-Making, Swiss Federal Institute of Technology Zurich, Zurich 1998.
- [39] Lewandowska A., Wawrzynkiewicz Z., Noskowiak A., Foltynowicz Z., Adaptation of ecoinvent database to Polish conditions - the case of wood production in forest, The International Journal of Life Cycle Assessment 2008, 13(4), 319-327.
- [40] Luo L., Voet E., Huppes G., Udo de Haes H.A., Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol, The International Journal of Life Cycle Assessment 2009, 14, 529-539.
- [41] Malça J., Freire F., Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation, Energy 2006, 31, 3362-3380.
- [42] Siitonen S., Holmberg H., Estimating the value of energy saving in industry by different cost allocation methods, International Journal of Energy Research 2012, 36, 324-334.
- [43] Śliwińska A., Alokacja obciążeń środowiskowych w ocenie cyklu życia na przykładzie układu kogeneracyjnego, Przegląd Górniczy 2013, 69(4), 113-120.
- [44] Więk A., Tkacz K., Carbon footprint: an ecological indicator in food production, Polish Journal of Environmental Studies 2013, 22(1), 53-61.
- [45] Ekvall T., Tillman A.M., Open-loop recycling: criteria for allocation procedures, The International Journal of Life Cycle Assessment 1997, 2(3), 155-162.
- [46] Doctor R.D., Molburg J.C. et al., Life-Cycle Analysis of a Shell Gasification-Based Multi- Product System with CO2 Recovery, DOE 2001.
- [47] Faix A., Schweinle J., Scholl S. et al., (GTI-tcbiomass) Life-Cycle Assessment of the BTOProcess (Biomass-to-Oil), Environmental Progress & Sustainable Energy 2010, 29, 2, 193-202.
- [48] van Zeijts H., Leneman H., Wegener Sleeswijk A., Fitting fertilisation in LCA: allocation to crops in a cropping plan, Journal of Cleaner Production 1999, 7, 69-74.
- [49] Berlin J., Environmental life cycle assessment (LCA) of Swedish semi-hard cheese, International Dairy Journal 2002, 12, 11, 939-953.
- [50] Cederberg C., Stadig M., System expansion and allocation in life cycle assessment of milk and beef production, The International Journal of Life Cycle Assessment 2003, 8(6), 350-356.
- [51] Guinée J.B., Gorrée M., Heijungs R., Huppes G., Kleijn R., de Koning A., van Oers L., Wegener Sleeswijk A., Suh S., Udo de Haes H.A., de Bruijn H., van Duin R., Huijbregts M.A.J., Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. IIb: Operational Annex, Kluwer Academic Publishers, Dordrecht 2002.
- [52] Kim S., Hwang T., Lee K.M., Allocation for cascade recycling system, The International Journal of Life Cycle Assessment 1997, 2(4), 217-222.
- [53] Jungbluth N., Bauer C., Dones R., Frischknecht R., Life-cycle assessment for emerging technologies: case studies for photovoltaic and wind power, The International Journal of Life Cycle Assessment 2005, 10(1), 24-34.
- [54] Tillman A.M., Svingby H., Lundstrom H., Life cycle assessment of municipal waste water systems, The International Journal of Life Cycle Assessment 1998, 3(3), 145-157.
- [55] Ruether J., Ramezan M., Grol E., Life Cycle Analysis of Greenhouse Gas Emissions for Hydrogen Fuel Production in the United States from LNG and Coal, NETL US DOE 2005.
- [56] Jungmeier G., Werner F., Jarnehammar A., Hohenthal C., Richter K., Allocation in LCA of wood-based products. Experiences of cost action E9. Part I. Methodology, The International Journal of Life Cycle Assessment 2002, 7(5), 290-294.
- [57] Jungmeier G., Werner F., Jarnehammar A., Hohenthal C., Richter K., Allocation in LCA of wood-based products. Experiences of cost action E9. Part II. Examples, The International Journal of Life Cycle Assessment 2002, 7(6), 369-375.
- [58] Kim S., Dale B.E., Allocation procedure in ethanol production system from corn grain I. System expansion, The International Journal of Life Cycle Assessment 2002, 7(4), 237-243.
- [59] Seyler C., Hellweg S., Monteil M., Hungerbühler K., Life cycle inventory for use of waste solvent as fuel substitute in the cement industry - a multi-input allocation model, The International Journal of Life Cycle Assessment 2005, 10(2), 120-130.
- [60] Steubing B., Zah R., Ludwig C., Life cycle assessment of SNG from wood for heating, electricity, and transportation, Biomass and Bioenergy 2011, 35, 2950-2960.
- [61] Azapagic A., Clift R., Allocation of environmental burdens in co-product systems: productrelated burdens (Part 1), The International Journal of Life Cycle Assessment 1999, 4(6), 357-369.
- [62] Azapagic A., Clift R., Allocation of environmental burdens in co-product systems: process and product-related burdens (Part 2), The International Journal of Life Cycle Assessment 2000, 5(1), 31-36.
- [63] Weidema B.P., Frees N., Nielsen A.M., Marginal production technologies for life cycle inventories, The International Journal of Life Cycle Assessment 1999, 4(1), 48-56.
- [64] Ekvall T., System Expansion and Allocation in Life Cycle Assessment with Implications for Wastepaper Management, Chalmers University of Technology, Göteborg 1999.
- [65] Svanes E., Vold M., Hanssen O.J., Effect of different allocation methods on LCA results of products from wild-caught fish and on the use of such results, The International Journal of Life Cycle Assessment 2011, 16(6), 512-521.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4dc8f2cc-10bc-474a-beb7-4cd1ae4fdf70