PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on microstructure of high-entropy alloy reinforced with ceramic particles formed by laser cladding

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The microstructure of SiC ceramic particle-reinforced FeCoNiCrAl high-entropy alloy specimens prepared by laser cladding was observed, and the effects of SiC and Al content and laser process parameters on the microstructure of laser cladding high-entropy alloy were analyzed. The results show that increasing the scanning speed and laser power or reducing the powder feeding rate is conducive to obtaining smaller grains and forming a denser microstructure. However, when the laser power and scanning speed are too large, pores and unmelted powder will appear. Increasing the content of SiC ceramic particles significantly increases the number of heterogeneous nucleation points, resulting in a decrease in the grain size in the cladding layer and a more tortuous grain boundary, which is conducive to improving comprehensive performance. However, when the SiC content is too high, defects, such as cracks and inclusions, are prone to occur. With the increase of Al content, the grain size in the cladding layer increases first and then decreases.
Rocznik
Strony
art. no. e6, 2025
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
Bibliografia
  • 1. Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater Sci Eng, A. 2004;375:213–8. https:// doi. org/ 10. 1016/j. msea. 2003. 10.257.
  • 2. Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropyalloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv Eng Mater. 2004;6(5):299–303.https://doi.org/10.1002/adem.200300567.
  • 3. Senkov ON, Miller JD, Miracle DB, et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat Commun. 2015;6(1):6529. https:// doi. org/ 10.1038/ncomms7529.
  • 4. Daoud HM, Manzoni AM, Völkl R, et al. Oxidation behavior of Al 8 Co 17 Cr 17 Cu 8 Fe 17 Ni 33 , Al 23 Co 15 Cr 23 Cu 8 Fe 15 Ni 15 , andAl 17 Co 17 Cr 17 Cu 17 Fe 17 Ni 17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air[J]. Adv Eng Mater. 2015;17(8):1134–41. https://doi.org/10.1002/adem.201500179.
  • 5. Pradeep KG, Tasan CC, Yao MJ, et al. Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design[J]. Mater Sci Eng A. 2015;648:183–92. https://doi.org/10.1016/j.msea.2015.09.010.
  • 6. You ZY, Tang ZY, Chu FB, et al. Microstructural design and deformation behavior of a TRIP/TWIP tri-phase heterogeneous high-entropy alloy[J]. Intermetallics. 2023;156: 107854. https://doi.org/10.1016/j.inter met.2023.107854.
  • 7. Xue R, Wang D, Tian Y, et al. Effect of Sn on elastic modulus and magnetic susceptibility of Zr-16Nb-x Ti (x= 4 wt%, 6 wt%)alloys[J]. J Central South Univ. 2023;30(2):412–8. https://doi.org/10.1007/s11771-023-5256-1.
  • 8. Niu P, Li R, Fan Z, et al. Inhibiting cracking and improving strength for additive manufactured AlxCoCrFeNi high entropy alloy via changing crystal structure from BCC-to-FCC[J]. Addit Manuf. 2023;71: 103584. https://doi.org/10.1016/j.addma.2023.103584.
  • 9. Li Z, Zhang Z, Liu X, et al. Strength, plasticity and coercivity tradeoff in soft magnetic high-entropy alloys by multiple coherent interfaces[J]. Acta Mater. 2023;254: 118970. https://doi.org/10.1016/j.actamat.2023.118970.
  • 10. Gao W, Dong Y, Jia X, et al. Novel CoFeAlMn high-entropy alloys with excellent soft magnetic properties and high thermal stability[J]. J Mater Sci Technol. 2023;153:22–31. https://doi.org/10.1016/j.jmst.2023.01.010.
  • 11. Krishna SA, Noble N, Radhika N, et al. A comprehensive review on advances in high entropy alloys: fabrication and surface modification methods, properties, applications, and future prospects[J]. J Manuf Process. 2024;109:583–606. https://doi.org/10.1016/j.jmapro.2023.12.039.
  • 12 Yang J, Liu W, Fu M, et al. Joining SiCf/SiC composites toAl0. 3CoCrFeNi high-entropy alloys with a Cu–Ti filler alloy: interfacial reactions, high-entropy effects, and mechanical properties[J]. Mater Sci Eng: A. 2023;881:145390. https://doi.org/10.1016/j.msea.2023.145390.
  • 13. Zhou X, He L, Zhang M, et al. Effect of ceramic particles on microstructure and properties of CoCrMoNbTi high-entropy alloy coating fabricated by laser cladding[J]. Optik. 2023;285:170987. https://doi.org/10.1016/j.ceramint.2023.11.162.
  • 14. Yang Y, Bi J, Sun K, et al. Toughened bulk high-entropy dibo-rides with high hardness and enhanced oxidation resistance viaSiC whiskers[J]. Mater Charact. 2024;210: 113814. https://doi.org/10.1016/j.matchar.2024.113814.
  • 15. Tang C, Zhang S, Zhang J, et al. Silicon carbide coated carbon nanotube porous sponge with super elasticity, low density, high thermal resistivity, and synergistically enhanced electro-magnetic interference shielding performances[J]. Chem Eng J.2023;469: 144011. https://doi.org/10.1016/j.cej.2023.144011.
  • 16. Surya MS, Gugulothu SK. Fabrication, mechanical and wear characterization of silicon carbide reinforced aluminium 7075 metal matrix composite[J]. Silicon. 2022;14(5):2023–32.https://doi.org/10.1007/s12633-021-00992-x.
  • 17. Szklarz Z, Lekki J, Bobrowski P, et al. The effect of SiC nano-particles addition on the electrochemical response of mechanically alloyed CoCrFeMnNi high entropy alloy[J]. Mater ChemPhys. 2018;215:385–92. https://doi.org/10.1016/j.matchemphys.2018.05.056.
  • 18. Xu L, Du H, Liu J, et al. Microstructure, mechanical, and electrochemical properties of SiC particle reinforced CoCrFeNiCu high-entropy alloy coatings[J]. Coatings. 2022;12(4):519.https://doi.org/10.3390/coatings12040519.
  • 19. Mohammadzadeh R, Heidarzadeh A, Serindağ HT, et al. Microstructure and mechanical response of novel Co-free FeNiMnCrAlTi high-entropy alloys [J]. J Mater Res Technol.2023;26:2043–9. https://doi.org/10.1016/j.jmrt.2023.08.039.
  • 20. Shen Q, Kong X, Chen X, et al. Powder plasma arc additive manufactured CoCrFeNi(SiC) x high-entropy alloys: microstructure and mechanical properties[J]. Mater Lett. 2021;282:128736. https://doi.org/10.1016/j.matlet.2020.128736.
  • 21. Wang H, Zhang L, Deng J, et al. Microstructure and mechanical properties of ZrB 2 ceramic particle reinforced AlCoCrFeNi highentropy alloy composite materials prepared by spark plasma sintering[J]. Ceram Int. 2024. https://doi.org/10.1016/j.ceramint.2024.08.371.
  • 22. Gao Z, Niu Z, Gao Z, et al. Microstructure and wear behavior of in-situ synthesized TiC-reinforced CoCrFeNi high entropy alloy prepared by laser cladding[J]. Appl Surf Sci. 2024;670:160720. https://doi.org/10.1016/j.apsusc.2024.160720.
  • 23. Dehestani M, Sharafi S, Khayati GR. Electrodeposited FeCoNi-WMo high entropy alloy/SiC nanocomposite coatings: Microstructure, mechanical properties and corrosion resistance[J].Intermetallics. 2023;162: 107988. https:// doi. org/ 10. 1016/j.inter met.2023.107988.
  • 24. Gu Y, Yi M, Chen Y, et al. Effect of the amount of SiC particles on the microstructure, mechanical and wear properties of FeMnCoCr high entropy alloy composites[J]. Mater Charact.2022;193: 112300. https:// doi. org/ 10. 1016/j. match ar. 2022.112300.
  • 25. Xu Y, Wang G, Song Q, et al. Microstructure, mechanical properties, and corrosion resistance of SiC reinforced Alx-CoCrFeNiTi1-x high-entropy alloy coatings prepared by laser cladding[J]. Surf Coat Technol. 2022;437: 128349. https://doi.org/10.1016/j.surfcoat.2022.128349.
  • 26. Zheng W, Wu J, Chen S, et al. Preparation of high-performance silica-based ceramic cores with B 4 C addition using selective laser sintering and SiO 2 –Al 2 O 3 sol infiltration[J]. Ceram Int.2023;49(4):6620–9. https://doi.org/10.1016/j.ceramint.2022.10.147.
  • 27. Yang R, Yang L, Wang T, et al. Untra-fine-grained equiatomic CoCrNi medium entropy alloys with high density stacking faults and strengthening mechanisms[J]. Mater Sci Eng, A. 2023;870:144880. https://doi.org/10.1016/j.msea.2023.144880.
  • 28. Wang W, Wang W, Wang S, et al. Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys[J]. Intermetallics. 2012;26:44–51. https://doi.org/10.1016/j.inter met.2012.03.005.
  • 29 Chen S, Xie X, Li W, et al. Temperature effects on the serrated behavior of an Al0. 5CoCrCuFeNi high-entropy alloy[J]. Mater Chem Phys. 2018;210:20–8. https:// doi. org/ 10. 1016/j. matchemphys.2017.09.004.
  • 30. Kenel C, Casati NP, Dunand DC. 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices[J]. Nat Commun. 2019;10(1):904. https:// doi. org/ 10.1038/s41467-019-08763-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4dc79206-e3ca-4299-b8b6-f18ba579b918
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.