PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techno-Economic Feasibility for Water Purification from Copper Ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main direction of the industrial development of Ukraine is the solving of the environmental pollution problems under the conditions of preservation of natural resources through complex use of raw materials with involvement of industrial wastes. The developed technology is intended for galvanic, accumulator, machine-building, mine and other enterprises, the wastewater from which contains ions of heavy metals. Heavy metal ions are extremely dangerous toxic substances because of a cumulative effect on aquatic organisms. In order to remove copper ions from aqueous solutions, the chemical precipitation with lime is used. The choice of reagent is associated with its cheapness. The most effective reagent precipitation of copper ions in the form of hydroxide occurs when the pH is raised to 10. In this work, the influence of sludge, which is formed as a result of water purification from copper ions, on the properties of cement was investigated. The effect was evaluated on the following properties: normal density of cement, hardening time, compressive strength at the age of 2 and 28 days and water separation coefficient. This allowed us to develop effective ways to their disposal. The developed method provides: a high degree of metal removal (up to 98-99%); simplicity of technological process; small capital and operating costs; complex technology of wastewater treatment process. Thus, the results of the study will contribute to the creation of low-waste and non-waste technologies for waste processing and disposal.
Twórcy
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy Avenu 37/4, 03056, Kyiv, Ukraine
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy Avenu 37/4, 03056, Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy Avenu 37/4, 03056, Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy Avenu 37/4, 03056, Kyiv, Ukraine
  • Department of Chemical Technology of Inorganic Substances, Metallurgical faculty, Dniprovsk State Technical University, st. Dniprobudivska 2, 51918, Kamianske, Ukraine
Bibliografia
  • 1. Awual MR, Ismael M., Yaita T., El-Safty SA, Shiwaku H., Okamoto Y., et al. 2014. Trace copper (II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem Eng J. 222, 67-76.
  • 2. Biela R., Kucera T. 2016. Efficacy of sorption materials for nickel, iron and manganese removal from water. Procedia Eng. 162, 56-63.
  • 3. Brescia F., Arents J., Meslich H., Turk A. 2012. Fundamentals of Chemistry: Laboratory Studies, University of Denver, Academic Press.
  • 4. Buzylo V., Pavlychenko A., Savelieva T., & Borysovska O. 2018. Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. Paper presented at the E3S Web of Conferences. 60, doi:10.1051/e3sconf/20186000013
  • 5. Chen X., Ren P., Li T., Trembly J. P., & Liu. 2018. Zinc removal from model wastewater by electrocoagulation: Processing, kinetics and mechanism. Chemical Engineering Journal. 349, 358-367.
  • 6. Chowdhury S., Mazumder M. A. J., Al-Attas O., Husain T. 2016. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of The Total Environment. 569, 476-488.
  • 7. Cortés S, Zúñiga-Venegas L, Pancetti F, Covarrubias A, Ramírez-Santana M, Adaros H, Muñoz L. 2021. A Positive Relationship between Exposure to Heavy Metals and Development of Chronic Diseases: A Case Study from Chile. Int J Environ Res Public Health. 18(4), 1419.
  • 8. Deyab, M. A. 2018. Corrosion inhibition of heat exchanger tubing material (titanium) in MSF desalination plants in acid cleaning solution using aromatic nitro compounds. Desalination. 439, 73-79.
  • 9. Dorne JL, Kass GE, Bordajandi LR, Amzal B, Bertelsen U, Castoldi AF, Heppner C, Eskola M, Fabiansson S, Ferrari P, Scaravelli E, Dogliotti E, Fuerst P, Boobis AR, Verger P. 2011. Human risk assessment of heavy metals: principles and applications. Met Ions Life Sci. 8, 27-60.
  • 10. Fazzo L, Minichilli F, Santoro M, Ceccarini A, Seta MD, Bianchi F, Comba P, Martuzzi M. 2017. Hazardous waste and health impact: a systematic review of the scientific literature. Environ Health. 16, 107.
  • 11. Fu Z, Xi S. 2020. The effects of heavy metals on human metabolism. Toxicol Mech Methods. 30(3), 167-176.
  • 12. Gomelya N.D., Trus I.N., Nosacheva Y.V. 2014. Water purification of sulfates by liming when adding reagents containing aluminum. Journal of Water Chemistry and Technology. 36. 2, 70-74.
  • 13. Halysh V.a , Trus I., Gomelya M., Trembus I., Pasalskiy B., Chykun N., Trokhymenko G., Remeshevska I. 2020. Utilization of Modified Biosorbents Based on Walnut Shells in the Processes of Wastewater Treatment from Heavy Metal Ion. J. Ecol. Eng. 21(4), 128–133.
  • 14. Halysh V.b , Trus I., Nikolaichuk A., Skiba M., Radovenchyk I., Deykun I., Vorobyova V., Vasylenko I., Sirenko L. 2020. Spent Biosorbents as Additives in Cement Production. Journal of Ecological Engineering. 21, 2, 131–138.
  • 15. Han H., Sun W., Hu Y., Cao X., Tang H., Liu R., & Yue T. 2016. Magnetite precipitation for iron removal from nickel-rich solutions in hydrometallurgy process. Hydrometallurgy. 165, 318-322.
  • 16. Hargreaves AJ, Vale P, Whelan J, Alibardi L, Constantino C, Dotro G, Cartmell E, Campo P. 2018. Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater. Clean Technol Envir. 20, 393-402.
  • 17. Hu H., Zhang Q., Li X., Wu L., & Liu Y. 2020. Efficient heterogeneous precipitation and separation of iron in copper-containing solution using dolomite. Separation and Purification Technology, 248.
  • 18. Hu Y, Boyer TH. 2018. Removal of multiple drinking water contaminants by combined ion exchange resin in a completely mixed flow reactor. Journal of Water Supply: Research and Technology-Aqua. 67, 659-672.
  • 19. Huang P., Li Z., Chen M., Hu H., Lei Z., Zhang Q., & Yuan W. 2017. Mechanochemical activation of serpentine for recovering cu (II) from wastewater. Applied Clay Science. 149, 1-7.
  • 20.Järup L. 2003. Hazards of heavy metal contamination. Br Med Bull. 68, 167-82.
  • 21.Jia, S., Zhuang, H., Han, H., & Wang, F. 2016. Application of industrial ecology in water utilization of coal chemical industry: A case study in erdos, china. Journal of Cleaner Production, 135, 20-29.
  • 22. Kolesnyk V., Pavlychenko A., Borysovska O., Buchavyi Y., & Kulikova D. 2020. Justification of the method of dust emissions localization on mobile crushing and sorting complexes of quarries with the use of air-and-water ejectors. Paper presented at the E3S Web of Conferences, 168 doi:10.1051/e3sconf/202016800029
  • 23. Kyrii S. O., Kosogina I. V., Astrelin I. M., &Obodenko L. S. 2018. Investigation of the properties of activated carbon modified by wastes of alumina production. VoprosKhimii i Khimicheskoi Tekhnologii. 2, 70-78.
  • 24. Lei Z., Li X., Huang P., Hu H., Li Z., & Zhang Q. 2019. Mechanochemical activation of antigorite to provide active magnesium for precipitating cesium from the existences of potassium and sodium. Applied Clay Science. 168, 223-229.
  • 25. Li X., Lei Z., Qu J., Li Z., & Zhang Q. 2016. Separation of copper from cobalt in sulphate solutions by using CaCO3 . Separation Science and Technology (Philadelphia). 51(17), 2772-2779.
  • 26. Li X., Lei Z., Qu J., Zhou X., Li Z., & Zhang Q. 2017. Separation of Cu (II) from Cd (II) in sulfate solution using CaCO3 and FeSO4 based on mechanochemical activation. RSC Advances. 7(4), 2002-2008.
  • 27. Li X., Zhang Q., & Yang, B. 2020. Co-precipitation with CaCO3 to remove heavy metals and significantly reduce the moisture content of filter residue. Chemosphere, 239.
  • 28. Li Z., Huang P., Hu H., Zhang Q., & Chen M. 2020. Efficient separation of Zn (II) from Cd (II) in sulfate solution by mechanochemically activated serpentine. Chemosphere, 258.
  • 29. Malik L.A., Bashir A., Qureashi A., & Pandith A. H. 2019. Detection and removal of heavy metal ions: A review. Environmental Chemistry Letters. 17, 4, 1495-1521.
  • 30. Martínez-Cruz A., Fernandes A., Ramos F., Soares S., Correia P., Baía A., Lopes A., Carvalho F. 2021. An Eco-Innovative Solution for Reuse of Leachate Chemical Precipitation Sludge: Application to Sanitary Landfill Coverage. Ecol. Eng. Environ. Technol. 2, 52–58.
  • 31. Naidu G., Ryu S., Thiruvenkatachari R., Choi Y. Jeong S., Vigneswaran, S. 2019. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution. 247, 1110-1124.
  • 32. Ohsawa M. 2009. Heavy metal–induced immunotoxicity and its mechanisms. Yakudaku Zassha. 129, 3, 305–319.
  • 33.Radovenchyk I., Trus I., Halysh V., Krysenko T.,Chuprinov E., Ivanchenko A. 2021. Evaluation of Optimal Conditions for the Application of Capillary Materials for the Purpose of Water Deironing. Ecol. Eng. Environ. Technol. 2, 1–7.
  • 34. Rehman K, Fatima F, Waheed I, Akash MSH. 2018. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 119(1), 157-184.
  • 35. Skіba М., Vorobyova V., Pivovarov О., Shakun A., Gnatko E., Trus I. 2018."Green" synthesis of nanoparticles of precious metals: antimicrobial and catalytic properties. Eastern-European Journal of Enterprise Technologies. 5/6. 95, 51-58.
  • 36. Trokhymenko G., Magas N., Gomelya N., Trus I., Koliehova A. 2020. Study of the Process of Electro Evolution of Copper Ions from Waste Regeneration Solutions. Journal of Ecological Engineering, 21, 2, 29–38.
  • 37. Trus I.a , Radovenchyk I., Halysh V., Skiba M., Vasylenko I., Vorobyova V., Hlushko O., Sirenko L. 2019. Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water. Journal of Ecological Engineering, 20, 8, 107–113.
  • 38. Trus I.M., Gomelya M.D., Makarenko I.M., Khomenlo A.S., Trokhymenko G.G. 2020. The Study of the particular aspects of water purification from heavy metal ions using the method of nanofiltration. Naukovyi Visnyk Natsionalnogo Hirnychogo Universytety. 4, 117–123.
  • 39. Trus І.b , Gomelya N., Trokhymenko G., Magas N., Hlushko O. 2019. Determining the influence of the medium reaction and the technique of magnetite modification on the effectiveness of heavy metals sorption. Eastern-European Journal of Enterprise Technologies. 6/10, 102, 49-54.
  • 40. Vardhan K. H., Kumar P. S., & Panda R. C. 2019. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids. 290, 111197. doi: 10.1016/j.molliq.2019.111197
  • 41. Vasyliev G., Vorobiova V. Rape grist extract (brassica napus) as a green corrosion inhibitor for water systems. 2019. Paper presented at the Materials Today: Proceedings. 6, 178−186.
  • 42. Vorobyova V. I., Skiba M. I., & Trus I. M. 2019. Apricot pomaces extract (prunus armeniaca l.) as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution. International Journal of Corrosion and Scale Inhibition. 8 (4), 1060-1083.
  • 43. Wang K., Zhang Q., Hu H., & Liu Y. 2019. Efficient removal of Iron (II) from manganese sulfate solution by using mechanically activated CaCO3. Hydrometallurgy. 188, 169-173.
  • 44. Wang Q., Gao W., Liu Y., Yuan J., Xu Z., Zeng Q., et al. 2014. Simultaneous adsorption of Cu (II) and SO4 2− ions by a novel silica gel functionalized with a ditopic zwitterionic Schiff base ligand. Chem Eng J. 250, 55-65.
  • 45. Zeng C., Hu H., Feng X., Wang K., & Zhang Q. 2020. Activating CaCO3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings. Chemosphere, 249.
  • 46. Zewail T.M., Yousef N.S. 2015. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alexandria Engineering Journal. 54 (1), 83-90
  • 47. Zheng J, Yan K, Wu Z, Liu M, Wang Z. 2018. Removal of sulfanilic acid from water using a lowpressure electrochemical RuO2 -TiO2 @Ti/PVDF composite membrane. Front Chem. 6, 395.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4dc18dcf-23b7-46f9-9383-9913a6c46cfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.