
JAISCR, 2024, Vol. 14, No. 2, pp. 101

A SHUFFLED FROG LEAPING ALGORITHM WITH
Q-LEARNING FOR DISTRIBUTED HYBRID FLOW SHOP

SCHEDULING PROBLEM WITH ENERGY-SAVING

Jingcao Cai1,2,∗ and Lei Wang1,∗

1School of Mechanical Engineering, Anhui Polytechnic University,
Wuhu 241000, China

2AnHui Key Laboratory of Detection Technology and Energy Saving Devices,
AnHui Polytechnic University, Wuhu 241000, China

∗E-mail:caijingcao@foxmail.com, wangdalei2000@126.com

Submitted: 11th December 2023; Accepted: 27th February 2024

Abstract

Energy saving has always been a concern in production scheduling, especially in dis-
tributed hybrid flow shop scheduling problems. This study proposes a shuffled frog leap-
ing algorithm with Q-learning (QSFLA) to solve distributed hybrid flow shop scheduling
problems with energy-saving(DEHFSP) for minimizing the maximum completion time
and total energy consumption simultaneously. The mathematical model is provided, and
the lower bounds of two optimization objectives are given and proved. A Q-learning
process is embedded in the memeplex search of QSFLA. The state of the population is
calculated based on the lower bound. Sixteen search strategy combinations are designed
according to the four kinds of global search and four kinds of neighborhood structure.
One combination is selected to be used in the memeplex search according to the popu-
lation state. An energy-saving operator is presented to reduce total energy consumption
without increasing the processing time. One hundred forty instances with different scales
are tested, and the computational results show that QSFLA is a very competitive algorithm
for solving DEHFSP.
Keywords: energy-saving; distributed scheduling; hybrid flow shop; shuffled frog-leaping
algorithm; reinforcement learning

1 Introduction

Energy has always been a concern of human so-
ciety. Using fossil fuels will cause air pollution, and
the energy shortage will restrict industrial produc-
tion and even the country’s economic development.
Studying energy-saving scheduling in manufactur-
ing is necessary to protect the environment better
and reduce energy waste.

The hybrid flow shop scheduling prob-
lem(HFSP) is a typical shop scheduling problem
in the manufacturing process. It widely exists in
many real-life manufacturing industries such as
steel industries, paper industries, textile industries,
semiconductor manufacturing, electronics indus-
tries, chemical industry, automobile manufacturing,
etc. HFSP with energy-saving has received exten-
sive attention from researchers. Lei et al. [13]
addressed HFSP with the minimization of total en-

10.2478/jaiscr-2024-0006
 – 120

102 Jingcao Cai and Lei Wang

ergy consumption and total tardiness. Lu et al. [19]
considered noise pollution, production efficiency,
and energy consumption. Zhang et al. [32] ad-
dressed HFSP by minimizing the maximum com-
pletion time and total energy consumption. Qin et
al. [24] solved HFSP with blocking to minimize the
maximum completion time and energy efficiency.
Unlike the maximum completion time index re-
lated to production efficiency, energy consumption
is seldom optimized as a sole optimization objec-
tive, as small energy consumption and pollution
are allowed, and the enterprise needs to survive.
Therefore, in the study of HFSP, energy-saving in-
dicators are often optimized along with production
efficiency and other indicators.

With economic globalization and manufac-
turing globalization, a distributed manufacturing
model has gradually formed to reduce manufac-
turing costs, energy consumption, and manage-
ment risks, thereby improving enterprises’ market
competitiveness. The common distributed schedul-
ing problems include distributed parallel schedul-
ing problems, distributed job shop scheduling prob-
lems, distributed flexible job shop scheduling prob-
lems, distributed flow shop scheduling problems,
distributed hybrid flow shop scheduling problems
(DHFSP), distributed assembly scheduling prob-
lems, etc. The distributed shop scheduling prob-
lem with energy-saving had been given enough at-
tention. Pan et al. [22] solved distributed parallel
scheduling problems with energy-efficient. Jiang
et al. [11] addressed distributed job shop schedul-
ing with energy-efficient. Du et al. [8] solved
distributed flexible job shop scheduling with crane
transportation to minimize the maximum comple-
tion time and energy consumption. Wang et al. [26]
studied energy-efficient scheduling of distributed
welding flow shop. Cai et al. [1] addressed DHFSP
with fuzzy processing time.

DHFSP is an extension of HFSP, and the cur-
rent research mainly focuses on minimizing the
maximum completion time related to production
efficiency. Ying et al. [31] presented a mixed
integer linear programming formulation and self-
tuning iterated greedy (SIG) algorithm that incor-
porates an adaptive cocktail decoding mechanism to
solve DHFSP with multiprocessor tasks. Cai et al.
[2] proposed a dynamic shuffled frog-leaping algo-
rithm to address the same problem as [31] and pro-

vide and prove a lower bound. Hao et al. [10] and
Li et al. [15] developed the hybrid brainstorm opti-
mization algorithm. Li et al. [17, 16, 18] designed
the artificial bee colony algorithm. Wang et al. [28]
proposed a bi-population cooperative memetic al-
gorithm. Cai et al. [5] presented a novel shuffled
frog-leaping algorithm with reinforcement learn-
ing for DHFSP with assembly. Meng et al. [20]
formulated three novel mixed-integer linear pro-
gramming models and a constraint programming
model for DHFSP with sequence-dependent setup
times. Only Qin et al. [23] considered optimiz-
ing the minimization of the sum of earliness, tar-
diness, and delivery costs in the single-objective
optimization study of DHFSP and proposed an
adaptive human-learning-based genetic algorithm.
Thus, given the requirements of actual production
scheduling, researchers are collectively dedicated to
studying methods that enhance production capacity.

As regards the multi-objective DHFSP, exist-
ing studies usually take the maximum completion
time as one of the optimization objectives. Lei et
al. [14] proposed a shuffled frog leaping algorithm
with memeplex grouping to minimize the maxi-
mum completion time and the number of tardy jobs.
Cai et al. [4] presented a shuffled frog-leaping al-
gorithm with memeplex quality to simultaneously
minimize total tardiness and the maximum comple-
tion time. Cai et al. [3] developed a collaborative
variable search to optimize fuzzy maximum com-
pletion time and total agreement index simultane-
ously. Wang et al. [30] and Cai et al. [1] pro-
posed two different shuffled frog leaping algorithms
to optimize fuzzy maximum completion time, to-
tal agreement index, and fuzzy total energy con-
sumption simultaneously. Jiang et al. [12] pre-
sented a novel multi-objective evolutionary algo-
rithm based on decomposition to minimize maxi-
mum completion time and total energy consump-
tion. [25] provided a multi-objective evolutionary
algorithm based on multiple neighborhoods’ local
search for minimizing maximum completion time,
total weighted earliness and tardiness, and total
workload. Wang et al. [29] developed a cooperative
memetic algorithm with a reinforcement learning-
based policy agent for minimizing the maximum
completion time and energy consumption. Zheng
et al. [33] proposed a cooperative coevolution algo-
rithm with problem-specific strategies to optimize
the fuzzy total tardiness and robustness simultane-

103Jingcao Cai and Lei Wang

ergy consumption and total tardiness. Lu et al. [19]
considered noise pollution, production efficiency,
and energy consumption. Zhang et al. [32] ad-
dressed HFSP by minimizing the maximum com-
pletion time and total energy consumption. Qin et
al. [24] solved HFSP with blocking to minimize the
maximum completion time and energy efficiency.
Unlike the maximum completion time index re-
lated to production efficiency, energy consumption
is seldom optimized as a sole optimization objec-
tive, as small energy consumption and pollution
are allowed, and the enterprise needs to survive.
Therefore, in the study of HFSP, energy-saving in-
dicators are often optimized along with production
efficiency and other indicators.

With economic globalization and manufac-
turing globalization, a distributed manufacturing
model has gradually formed to reduce manufac-
turing costs, energy consumption, and manage-
ment risks, thereby improving enterprises’ market
competitiveness. The common distributed schedul-
ing problems include distributed parallel schedul-
ing problems, distributed job shop scheduling prob-
lems, distributed flexible job shop scheduling prob-
lems, distributed flow shop scheduling problems,
distributed hybrid flow shop scheduling problems
(DHFSP), distributed assembly scheduling prob-
lems, etc. The distributed shop scheduling prob-
lem with energy-saving had been given enough at-
tention. Pan et al. [22] solved distributed parallel
scheduling problems with energy-efficient. Jiang
et al. [11] addressed distributed job shop schedul-
ing with energy-efficient. Du et al. [8] solved
distributed flexible job shop scheduling with crane
transportation to minimize the maximum comple-
tion time and energy consumption. Wang et al. [26]
studied energy-efficient scheduling of distributed
welding flow shop. Cai et al. [1] addressed DHFSP
with fuzzy processing time.

DHFSP is an extension of HFSP, and the cur-
rent research mainly focuses on minimizing the
maximum completion time related to production
efficiency. Ying et al. [31] presented a mixed
integer linear programming formulation and self-
tuning iterated greedy (SIG) algorithm that incor-
porates an adaptive cocktail decoding mechanism to
solve DHFSP with multiprocessor tasks. Cai et al.
[2] proposed a dynamic shuffled frog-leaping algo-
rithm to address the same problem as [31] and pro-

vide and prove a lower bound. Hao et al. [10] and
Li et al. [15] developed the hybrid brainstorm opti-
mization algorithm. Li et al. [17, 16, 18] designed
the artificial bee colony algorithm. Wang et al. [28]
proposed a bi-population cooperative memetic al-
gorithm. Cai et al. [5] presented a novel shuffled
frog-leaping algorithm with reinforcement learn-
ing for DHFSP with assembly. Meng et al. [20]
formulated three novel mixed-integer linear pro-
gramming models and a constraint programming
model for DHFSP with sequence-dependent setup
times. Only Qin et al. [23] considered optimiz-
ing the minimization of the sum of earliness, tar-
diness, and delivery costs in the single-objective
optimization study of DHFSP and proposed an
adaptive human-learning-based genetic algorithm.
Thus, given the requirements of actual production
scheduling, researchers are collectively dedicated to
studying methods that enhance production capacity.

As regards the multi-objective DHFSP, exist-
ing studies usually take the maximum completion
time as one of the optimization objectives. Lei et
al. [14] proposed a shuffled frog leaping algorithm
with memeplex grouping to minimize the maxi-
mum completion time and the number of tardy jobs.
Cai et al. [4] presented a shuffled frog-leaping al-
gorithm with memeplex quality to simultaneously
minimize total tardiness and the maximum comple-
tion time. Cai et al. [3] developed a collaborative
variable search to optimize fuzzy maximum com-
pletion time and total agreement index simultane-
ously. Wang et al. [30] and Cai et al. [1] pro-
posed two different shuffled frog leaping algorithms
to optimize fuzzy maximum completion time, to-
tal agreement index, and fuzzy total energy con-
sumption simultaneously. Jiang et al. [12] pre-
sented a novel multi-objective evolutionary algo-
rithm based on decomposition to minimize maxi-
mum completion time and total energy consump-
tion. [25] provided a multi-objective evolutionary
algorithm based on multiple neighborhoods’ local
search for minimizing maximum completion time,
total weighted earliness and tardiness, and total
workload. Wang et al. [29] developed a cooperative
memetic algorithm with a reinforcement learning-
based policy agent for minimizing the maximum
completion time and energy consumption. Zheng
et al. [33] proposed a cooperative coevolution algo-
rithm with problem-specific strategies to optimize
the fuzzy total tardiness and robustness simultane-

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

ously without considering the optimization object
of the maximum completion time.

Regarded as DHFSP with energy saving, Wang
et al. [30] and Cai et al. [1] studied energy-saving
DHFSP with three objectives but did not consider
the problem of a deterministic environment. Jiang
et al. [12] addressed the multi-objective energy-
saving DHFSP in the deterministic environment.
However, the processing speed of machines is fixed
in this problem, and it is not considered to reduce
energy consumption by reducing the processing
speed of machines. Although Wang et al. [29] ad-
dressed the multi-objective energy-saving DHFSP
and reduced energy consumption by reducing the
processing speed of machines, the energy consump-
tion during the period from machine opening to job
processing is not considered. As stated above, most
existing studies on DHFSP, whether a single objec-
tive optimization problem or multi-objective opti-
mization problem, focused on improving produc-
tion efficiency. Moreover, energy consumption is
generally not optimized as an independent objective
but often along with the production efficiency ob-
jective as another optimization objective. Since en-
ergy saving and consumption reduction need to be
based on the survival of enterprises, it is meaningful
to consider both energy saving and production effi-
ciency. Given the necessity of studying energy con-
sumption scheduling and filling the research gap,
this paper studies the distributed hybrid flow shop
scheduling problem with energy saving(DEHFSP).

DHFSP is the NP-hard problem, and as the ex-
tension of DHFSP, DEHFSP is also NP-hard. Due
to the complexity, DHFSP is almost impossible to
be solved by exact algorithms and obtain exact solu-
tions in an acceptable time [20]. The intelligent op-
timization algorithm is the primary method to solve
DHFSP, especially multi-objective DHFSP, such as
shuffled frog leaping algorithm(SFLA)[1], variable
neighborhood search algorithm[3], evolutionary al-
gorithm based on decomposition[12], evolution-
ary algorithm based on multiple neighborhoods lo-
cal search[25], cooperative memetic algorithm[29],
and cooperative coevolution algorithm[33]. Be-
cause of the shortage of exact algorithms to solve
large-scale distributed shop scheduling problems
and the successful application of intelligent opti-
mization algorithms, especially SFLA, in DHFSP,
we use SFLA to solve DEHFSP.

SFLA is an intelligent optimization algorithm
that mimics the process of frogs searching for food
[9]. SFLA has a good search framework, and its op-
timization ability is strong with fewer parameters,
and it has been successfully applied to distributed
shop scheduling[1, 21]. SFLA, like other intelli-
gent optimization algorithms, has been proven to
have a good search framework when it was pro-
posed. However, the search strategy, or the oper-
ator, must be designed according to the character-
istics of the problem in order to avoid the deterio-
ration of the algorithm’s performance. The opera-
tor, such as crossover operator, mutation operator,
global search operator, or local search operator, to
generate new solutions to explore the solution space
is critically essential for intelligent optimization al-
gorithms. Nevertheless, in recent research, the se-
lection and use of these critical operators are still
based on experiment or experience. Consequently,
it is necessary to adopt an effective new method to
make the selection of effective operators more in-
telligent in many complicated operations.

Q-learning is a reinforcement learning that can
dynamically select an action in a state and can be
used to choose operators intelligently. The combi-
nation of Q-learning and the intelligent optimiza-
tion algorithm to improve the algorithm’s perfor-
mance has attracted some attention. Chen et al. [6]
used the Q-learning algorithm to intelligently ad-
just the key parameters of the genetic algorithm to
address the flexible job shop scheduling problem. It
was an exciting exploration and worked well. Wang
et al. [27] implemented a Q-learning algorithm to
dynamically select search operators for solving dis-
tributed three-stage assembly scheduling problems.
Cai et al. [5] embedded Q-learning algorithm in
QSFLA to select a search strategy dynamically for
memeplex search to solve a distributed assembly
hybrid flow shop scheduling problem. However,
in current research, the fusion of Q-learning and
the intelligent optimization algorithm is only used
to solve single-objective shop scheduling problems.
For the multi-objective optimization problem, the
evaluation of the population and the design of action
need to explore. Therefore, combining Q-learning
with intelligent optimization algorithms to solve
multi-objective optimization problems is highly es-
sential.

104 Jingcao Cai and Lei Wang

In this study, DEHFSP is considered. The
main contributions are summarised as follows. (1)
DEHFSP with energy saving is described, and
its mathematical model is provided. (2) The
lower bounds of the maximum completion and to-
tal energy consumption of DEHFSP are given and
proved. (3) A variety of neighborhood search strate-
gies and global search strategies are designed, and
an energy-saving operator is presented for some
unique solutions. (4) The Q-learning algorithm is
embedded in SFLA to dynamically chose a search
strategy in memeplex search. (5) Several experi-
ments are conducted, and the computational results
show that Q-learning is effective and efficient and
QSFLA is a very competitive method for DEHFSP.

The remainder of the paper is organized as fol-
lows. The problem description is formulated in Sec-
tion 2. Section 3 gives and proves the lower bound.
The basic SFLA and Q-learning is introduced in
Section 4. Section 5 provides the detailed designs
of the proposed algorithm. Section 6 gives the com-
putational experiments and analyses the results. Fi-
nally, we end the paper with some conclusions and
future work in Section 7.

2 Problem description

Distributed energy-saving hybrid flow shop
scheduling problem is described as follows. There
are n jobs J1,J2, . . . ,Jn need to be processed in F ho-
mogeneous factories. Each factory can be regarded
as a hybrid flow shop. In the f -th factory, there are
S stages, each of which contains m f s identical par-
allel machines. M f sl is the l-th machine at the s-th
stage in the f -th factory. vis is the processing speed
of Ji on M f sl . pis represents the processing time of
Ji on M f sl when vis = 1. The actual processing time
of Ji on M f sl is pis/vis.

A machine has two modes, including process-
ing mode and standby mode, and both of theses
modes incur energy consumption. Eis is defined
as the energy consumption per unit time of Ji pro-
cessed on M f sl at vis. Eis = ξis · v2

is, where ξis is the
coefficient of energy consumption. SE is the energy
consumption per unit time of M f sl in standby mode.
It’s evident that the faster the processing speed, the
higher the energy consumption of the machine. Ta-
ble 1 gives notations and descriptions.

Table 1. Notations and descriptions

Notation Description

i, f ,s, l Indexes
n The number of jobs
Ji The i-th job
F The number of factories
S The number of stages

m f s The number of parallel machines at stage s
of factory f

M f sl The l-th machine at stage s of factory f
V A one-dimensional vector which represents

the set of selectable process speed of machines
vis The processing speed of Ji in stage s and vis ∈V
pis The processing time of Ji on M f sl when vis = 1
Eis The energy consumption per unit time of Ji

processed on M f sl at vis
SE The energy consumption per unit time of M f sl

in standby mode
Ci The completion time of Ji

Cmax The maximum completion time of all jobs
T EC The total energy consumption
Φ f sl The set of all jobs processed on M f sl
U A very large positive number
Xi f If Ji is processed in the f -th factory, Xi f = 1;

otherwise Xi f = 0
Yi f sl If Ji is processed in the M f sl , Yf sl = 1;

otherwise Yf sl = 0
Zii′ f s If Ji is processed before Ji′ at the l-th stage

in the f -th factory, Zii′ f s = 1;
otherwise Zii′ f s = 0

stis The start time of process of Ji at the l-th stage
etis The end time of process of Ji at the l-th stage

DEHFSP aims to allocate jobs to machines in
each stage in different factories. Then decide the
processing sequence of jobs in each machine and
select an appropriate speed for each job on each
machine to minimize maximum completion time
and total energy consumption simultaneously. The
mathematical model of DEHFSP is as follows:

min Cmax = max
i∈{1,2,...,n}

{Ci} (1)

min T EC =
F

∑
f=1

S

∑
s=1

m f s

∑
l=1

(∑
Ji∈Φ f sl

pis/vis · (Eis −SE)+SE · max
Ji∈Φ f sl

Ci) (2)

Eis = ξis × v2
is (3)

F

∑
f=1

Xi f = 1,∀i (4)

m f s

∑
l=1

Yi f sl = Xi f ,∀i, f ,s (5)

sti1 ≥ 0,∀i (6)

sti(s+1) ≥ etis,∀i,s (7)

105Jingcao Cai and Lei Wang

In this study, DEHFSP is considered. The
main contributions are summarised as follows. (1)
DEHFSP with energy saving is described, and
its mathematical model is provided. (2) The
lower bounds of the maximum completion and to-
tal energy consumption of DEHFSP are given and
proved. (3) A variety of neighborhood search strate-
gies and global search strategies are designed, and
an energy-saving operator is presented for some
unique solutions. (4) The Q-learning algorithm is
embedded in SFLA to dynamically chose a search
strategy in memeplex search. (5) Several experi-
ments are conducted, and the computational results
show that Q-learning is effective and efficient and
QSFLA is a very competitive method for DEHFSP.

The remainder of the paper is organized as fol-
lows. The problem description is formulated in Sec-
tion 2. Section 3 gives and proves the lower bound.
The basic SFLA and Q-learning is introduced in
Section 4. Section 5 provides the detailed designs
of the proposed algorithm. Section 6 gives the com-
putational experiments and analyses the results. Fi-
nally, we end the paper with some conclusions and
future work in Section 7.

2 Problem description

Distributed energy-saving hybrid flow shop
scheduling problem is described as follows. There
are n jobs J1,J2, . . . ,Jn need to be processed in F ho-
mogeneous factories. Each factory can be regarded
as a hybrid flow shop. In the f -th factory, there are
S stages, each of which contains m f s identical par-
allel machines. M f sl is the l-th machine at the s-th
stage in the f -th factory. vis is the processing speed
of Ji on M f sl . pis represents the processing time of
Ji on M f sl when vis = 1. The actual processing time
of Ji on M f sl is pis/vis.

A machine has two modes, including process-
ing mode and standby mode, and both of theses
modes incur energy consumption. Eis is defined
as the energy consumption per unit time of Ji pro-
cessed on M f sl at vis. Eis = ξis · v2

is, where ξis is the
coefficient of energy consumption. SE is the energy
consumption per unit time of M f sl in standby mode.
It’s evident that the faster the processing speed, the
higher the energy consumption of the machine. Ta-
ble 1 gives notations and descriptions.

Table 1. Notations and descriptions

Notation Description

i, f ,s, l Indexes
n The number of jobs
Ji The i-th job
F The number of factories
S The number of stages

m f s The number of parallel machines at stage s
of factory f

M f sl The l-th machine at stage s of factory f
V A one-dimensional vector which represents

the set of selectable process speed of machines
vis The processing speed of Ji in stage s and vis ∈V
pis The processing time of Ji on M f sl when vis = 1
Eis The energy consumption per unit time of Ji

processed on M f sl at vis
SE The energy consumption per unit time of M f sl

in standby mode
Ci The completion time of Ji

Cmax The maximum completion time of all jobs
T EC The total energy consumption
Φ f sl The set of all jobs processed on M f sl
U A very large positive number
Xi f If Ji is processed in the f -th factory, Xi f = 1;

otherwise Xi f = 0
Yi f sl If Ji is processed in the M f sl , Yf sl = 1;

otherwise Yf sl = 0
Zii′ f s If Ji is processed before Ji′ at the l-th stage

in the f -th factory, Zii′ f s = 1;
otherwise Zii′ f s = 0

stis The start time of process of Ji at the l-th stage
etis The end time of process of Ji at the l-th stage

DEHFSP aims to allocate jobs to machines in
each stage in different factories. Then decide the
processing sequence of jobs in each machine and
select an appropriate speed for each job on each
machine to minimize maximum completion time
and total energy consumption simultaneously. The
mathematical model of DEHFSP is as follows:

min Cmax = max
i∈{1,2,...,n}

{Ci} (1)

min T EC =
F

∑
f=1

S

∑
s=1

m f s

∑
l=1

(∑
Ji∈Φ f sl

pis/vis · (Eis −SE)+SE · max
Ji∈Φ f sl

Ci) (2)

Eis = ξis × v2
is (3)

F

∑
f=1

Xi f = 1,∀i (4)

m f s

∑
l=1

Yi f sl = Xi f ,∀i, f ,s (5)

sti1 ≥ 0,∀i (6)

sti(s+1) ≥ etis,∀i,s (7)

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

etis = stis +
F

∑
f=1

S

∑
s=1

m f s

∑
l=1

(pis
/

vis ·Xi f ×Yi f sl),∀i (8)

Zii′ f s +Zi′i f s ≤ 1,∀ f ,s, i, i′ (9)

Zii′ f s +Zi′i f s ≥ Yi f sl +Yi′ f sl −1,∀ f ,s, i′ > i (10)

sti′l ≥ etil −U × (3−Yi f sl −Yi′ f sl −Zii′ f s),

∀i ̸= i′, f ,s, l ∈ {1,2, ...,m f s} (11)

Xi f ∈ {0,1},∀i, f (12)

Yi f sl ∈ {0,1},∀i, f ,s, l ∈ {1,2, ...,m f s} (13)

Zii′ f s ∈ {0,1},∀i, i′, f ,s (14)

where equation (1) is to minimize maximum com-
pletion time; equation (2) is to minimize total
energy consumption; equation (3) provides the
method to calculate energy consumption; the con-
straint (4) shows that each job only can be pro-
cessed in one factory; constraint (5) demonstrates
that each job only can be assigned to one machine
at each stage in each factory; constraint (6) indi-
cates that each job can be processed after zero time;
constraint (7) shows that the start time of process at
stage s+ 1 is not earlier than the end time of pro-
cess at stage s; constraint (8) demonstrates that the
process cannot be interrupted; constraints (9)-(11)
indicate that each machine can only process one job
at one time; constraints (12)-(14) provide the binary
decision variables.

Figure 1. Gantt Chart of the case

An example is provided to illustrate the prob-
lem better. In a distributed hybrid flow shop, ten
jobs need to be processed in two factories, each fac-
tory has two process stages, and each stage contains
two parallel machines. The detailed processing in-
formation is shown in Table 2. Gantt Chart of this
case is shown in Fig.1.

As shown in Fig.1, the completing time of J5 is
195.885, and J5 is the last finished job; as a result,
the maximum complete time Cmax=195.885 based
on equation (1). The unit energy consumption of
each machine at different time points is shown in
Figure 2, and the total energy consumption T EC =
5702.83 can be calculated by equations (2)-(3).

3 Lower bound

The lower bound is an effective method to eval-
uate the quality of scheduling, and it is also the ba-
sis of evaluating population state in multi-objective
optimization. For DEHFSP, there are two opti-
mization objectives, Cmax and T EC, and their lower
bound are given and proved below.

Theorem 1. Lower bound on Cmax of DEHFSP is
defined by

LBcmax = max
s∈{1,2,...,S}

{
1
F

(
Ψ1

s +
1

m f s
·

n

∑
i=1

pis

max{V}
+Ψ2

s

)}

(15)

where ψ1
is =

s−1
∑

s′=1
pis′

/
vis′ , ψ2

is =
S
∑

s′=s+1
pis′

/
vis′ , sort

all ψr
is in the ascending order and suppose that

ψr
1s ≤ ψr

2s ≤ ·· · ≤ ψr
ns, then Ψr

s =
F
∑

f=1
ψr

f s,r = 1,2.

Proof. Cai et al. [2] provide the lower bound on
Cmax of DHFSP with multiprocessor tasks and the
distinction of DEHFSP and DHFSP with multipro-
cessor tasks is that a job can only be processed by
one machine in DEHFSP. The lower bound on Cmax

of DEHFSP can be obtained when the number of
processing machines required for jobs is adjusted
to 1.

Theorem 2. Lower bound on T EC of DEHFSP is
defined by

LBT EC = min
vis∈V

{
S

∑
s=1

n

∑
i=1

pis ·ξis · vis

+
1
F

S

∑
s=1

min
i∈{1,2,...,n}

{
s

∑
s′=1

{pis′/vis′ ·m f s ·SE}}} (16)

Proof. According to Equation (2),

T EC =
S

∑
s=1

n

∑
i=1

pis
/

vis ·Eis +∆1 +∆2, (17)

106 Jingcao Cai and Lei Wang

Table 2. The processing information of a case

n F S m f 1 m f 2 ξis SE V
10 2 2 2 2 3 1 {1.00,1.30,1.55,1.80,2.00}

p1,1 p2,1 p3,1 p4,1 p5,1 p6,1 p7,1 p8,1 p9,1 p10,1 p1,2 p2,2 p3,2 p4,2 p5,2 p6,2 p7,2 p8,2 p9,2 p10,2
39 81 88 43 61 36 48 100 45 61 53 41 81 41 85 98 47 45 84 42

v1,1 v2,1 v3,1 v4,1 v5,1 v6,1 v7,1 v8,1 v9,1 v10,1 v1,2 v2,2 v3,2 v4,2 v5,2 v6,2 v7,2 v8,2 v9,2 v10,2
1.30 1.80 1.00 2.00 2.00 2.00 1.55 1.00 1.80 1.00 2.00 1.30 1.00 2.00 1.30 1.80 1.00 1.80 1.30 2.00

Figure 2. Energy consumption of each machine

107Jingcao Cai and Lei Wang

Table 2. The processing information of a case

n F S m f 1 m f 2 ξis SE V
10 2 2 2 2 3 1 {1.00,1.30,1.55,1.80,2.00}

p1,1 p2,1 p3,1 p4,1 p5,1 p6,1 p7,1 p8,1 p9,1 p10,1 p1,2 p2,2 p3,2 p4,2 p5,2 p6,2 p7,2 p8,2 p9,2 p10,2
39 81 88 43 61 36 48 100 45 61 53 41 81 41 85 98 47 45 84 42

v1,1 v2,1 v3,1 v4,1 v5,1 v6,1 v7,1 v8,1 v9,1 v10,1 v1,2 v2,2 v3,2 v4,2 v5,2 v6,2 v7,2 v8,2 v9,2 v10,2
1.30 1.80 1.00 2.00 2.00 2.00 1.55 1.00 1.80 1.00 2.00 1.30 1.00 2.00 1.30 1.80 1.00 1.80 1.30 2.00

Figure 2. Energy consumption of each machine

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

where ∆1 is the energy consumption of all machines
from the start of an operation to the start of pro-
cessing jobs in standby mode, and ∆2 represents the
other consumption of all machines in standby mode.

It is obviously,

S

∑
s=1

n

∑
i=1

pis
/

vis ·Eis +∆1 ≤ T EC. (18)

According to constraints (7-8),

∆1 =
F

∑
f=1

S

∑
s=1

m f s

∑
l=1

min
Yi f sl=1

{stis} ·SE

=
F

∑
f=1

S

∑
s=1

(min
Yi f s1=1

{stis}+ min
Yi f s2=1

{stis}+ · · ·

+ min
Yi f sm f s=1

{stis}) ·SE

≥
F

∑
f=1

S

∑
s=1

min
i∈{1,2,...,n}

{stis ·Xi f ·m f s} ·SE (19)

According to constraints (7-8),

stis ≥
s−1

∑
s′=1

pis′
/

vis′ . (20)

According to equations (19-20),

∆1 ≥
F

∑
f=1

S

∑
s=1

min
i∈{1,2,...,n}

{
s

∑
s′=1

{pis′/vis′ ·Xi f ·m f s ·SE}}

≥ 1
F

S

∑
s=1

min
i∈{1,2,...,n}

{
s

∑
s′=1

{pis′/vis′ ·m f s ·SE}}

(21)

According to equations (18) and (21),

S

∑
s=1

n

∑
i=1

pis/vis ·Eis

+
1
F

S

∑
s=1

min
i∈{1,2,...,n}

{
s

∑
s′=1

{pis′/vis′ ·m f s ·SE}} ≤ T EC

(22)

Since vis ∈V ,

min
vis∈V

{
S

∑
s=1

n

∑
i=1

pis ·ξis · vis

+
1
F

S

∑
s=1

min
i∈{1,2,...,n}

{
s

∑
s′=1

{pis′/vis′ ·m f s ·SE}}} ≤ T EC

(23)

Thus, LBT EC is proved.

In particular, it is not the lower the processing
speed of jobs, the smaller the total energy consump-
tion. The first impression is that the processing en-
ergy of jobs is reduced, then the total energy con-
sumption is also reduced. However, in the real pro-
cessing environment, from the first job processing,
all machines are turned on until all jobs are finished.
When the processing speed of the jobs decreases,
the processing energy consumption will decrease,
while the idle energy consumption ∆1 will increase.
Therefore, if the total energy consumption is to be
minimized, the processing speed of all jobs needs to
be coordinated, rather than minimized for all jobs.

4 Introduction to SFLA and Q-
learning

4.1 Introduction to SFLA

The main steps of SFLA contain population ini-
tialization, population division, memeplex search,
and population shuffling. The population P includes
N solutions, each of which is defined as the posi-
tion of a virtual frog. All solutions are initialized,
and the initial population is obtained. Then all so-
lutions are sorted in the descending order of fitness
and put into Ps memeplexes in population division.
In memeplex search, µ searches are executed for
each memeplex, and the pseudo-code of memeplex
search is shown in Algorithm 1. After all meme-
plexes execute the search, they are shuffled, and a
new population is formed. Repeat population di-
vision, memeplex search, and population shuffling
until the terminal condition is satisfied. The pseudo-

108 Jingcao Cai and Lei Wang

code of SFLA is shown in Algorithm 2. 4.2 Introduction to Q-learning

Q-learning is a model-free reinforcement learn-
ing algorithm which is a machine learning method.
Q-learning includes four parts, S , A , R and P ,
where S is the state space of environment, A is the
action space, R is the reward function, and P is the
state transition probability.

In Q-learning, action is chosen according to the
state of the environment and Q-table. After the se-
lected action is executed, Q-table is updated based
on the reward of the current action and the new state
of the environment. The process of Q-learning is
shown in Algorithm 3.

5 A shuffled frog leaping algorithm
with Q-learning

5.1 Coding and decoding

DEHFSP includes four sub-problem: factory
assignment, machine assignment, sequence assign-
ment, and speed assignment. Cai and his colleagues
used a method that determines machine assignment
at the decoding stage to reduce sub-problems. This
method has been testified to be an effective one, and
we adopt the same method to solve DEHFSP.

An encoding of DEHFSP is represented
as a factory string [θ1,θ2, ...,θn], a se-
quence string [π1,π2, ...,πn] and a speed string
[ω1,1,ω2,1, ...,ωn,1, ...,ω1,S,ω2,S, ...,ωn,S], where
θi ∈ {1,2, ...,F}, πi ∈ {1,2, ...,n} and πi ̸= π j

(∀i ̸= j), ωi, j ∈ {1,2..., |V |} and V is the set of ma-
chine processing speeds and Vωi, j is the processing
speed of Jj in stage i.

The decoding procedure is described as follows.
Assign all jobs to factories according to the factory
string, where Ji is assigned to factory θi. In each
factory, the permutation of all jobs is decided by se-
quence string, and for two jobs Jπi and Jπ j , if i < j,
assign Jπi to machines preferentially. When select-
ing a machine for a job, first determine the set of
machines that can be selected, then choose a ma-
chine that can minimize the completion time of this
job. The processing speed of jobs is determined by
the speed string, and Ji is processed on M f sl with the
speed of Vωis . If the completion time of this job in
some machines is the same, select the machine with
the smaller number. For example, if machine M111

Algorithm 1 Memeplex search of SFLA
1: for i = 1 to Ps do
2: for j = 1 to µ do
3: xnew = xw + rand · (xb − xw);
4: if xnew is better than xw then
5: xw = xnew;

continue;
6: end if
7: xnew = xw + rand(xg − xw);
8: if xnew is better than xw then
9: xw = xnew;

continue;
10: end if
11: randomly generate a new solution xnew;
12: xw = xnew;
13: end for
14: end for

Algorithm 2 SFLA
1: Population initialization;
2: while terminal condition is not satisfied do
3: Population division;
4: Memeplex search;
5: population shuffling;
6: end while
7: Output optimization result;

Algorithm 3 Q-learning
1: Initialize Q-table;
2: while terminal condition is not satisfied do
3: Evaluate the state st of environment;
4: Select an action at according to Q-table by ε−

greed;
5: Update Q-table by

Q(st ,at)←
Q(st ,at)+α · (rt+1 + γmax

a
(st+1,a)−Q(st ,at));

(24)

6: end while
7: Output Q-table;

Algorithm 2 SFLA
1: Population initialization;
2: while terminal condition is not satisfied do
3: Population division;
4: Memeplex search;
5: population shuffling;
6: end while
7: Output optimization result;

Algorithm 3 Q-learning
1: Initialize Q-table;
2: while terminal condition is not satisfied do
3: Evaluate the state st of environment;
4: Select an action at according to Q-table by ε−

greed;
5: Update Q-table by

Q(st ,at)←
Q(st ,at)+α · (rt+1 + γmax

a
(st+1,a)−Q(st ,at));

(24)

6: end while
7: Output Q-table;

Algorithm 2 SFLA
1: Population initialization;
2: while terminal condition is not satisfied do
3: Population division;
4: Memeplex search;
5: population shuffling;
6: end while
7: Output optimization result;

Algorithm 3 Q-learning
1: Initialize Q-table;
2: while terminal condition is not satisfied do
3: Evaluate the state st of environment;
4: Select an action at according to Q-table by ε−

greed;
5: Update Q-table by

Q(st ,at)←
Q(st ,at)+α · (rt+1 + γmax

a
(st+1,a)−Q(st ,at));

(24)

6: end while
7: Output Q-table;

109Jingcao Cai and Lei Wang

code of SFLA is shown in Algorithm 2. 4.2 Introduction to Q-learning

Q-learning is a model-free reinforcement learn-
ing algorithm which is a machine learning method.
Q-learning includes four parts, S , A , R and P ,
where S is the state space of environment, A is the
action space, R is the reward function, and P is the
state transition probability.

In Q-learning, action is chosen according to the
state of the environment and Q-table. After the se-
lected action is executed, Q-table is updated based
on the reward of the current action and the new state
of the environment. The process of Q-learning is
shown in Algorithm 3.

5 A shuffled frog leaping algorithm
with Q-learning

5.1 Coding and decoding

DEHFSP includes four sub-problem: factory
assignment, machine assignment, sequence assign-
ment, and speed assignment. Cai and his colleagues
used a method that determines machine assignment
at the decoding stage to reduce sub-problems. This
method has been testified to be an effective one, and
we adopt the same method to solve DEHFSP.

An encoding of DEHFSP is represented
as a factory string [θ1,θ2, ...,θn], a se-
quence string [π1,π2, ...,πn] and a speed string
[ω1,1,ω2,1, ...,ωn,1, ...,ω1,S,ω2,S, ...,ωn,S], where
θi ∈ {1,2, ...,F}, πi ∈ {1,2, ...,n} and πi ̸= π j

(∀i ̸= j), ωi, j ∈ {1,2..., |V |} and V is the set of ma-
chine processing speeds and Vωi, j is the processing
speed of Jj in stage i.

The decoding procedure is described as follows.
Assign all jobs to factories according to the factory
string, where Ji is assigned to factory θi. In each
factory, the permutation of all jobs is decided by se-
quence string, and for two jobs Jπi and Jπ j , if i < j,
assign Jπi to machines preferentially. When select-
ing a machine for a job, first determine the set of
machines that can be selected, then choose a ma-
chine that can minimize the completion time of this
job. The processing speed of jobs is determined by
the speed string, and Ji is processed on M f sl with the
speed of Vωis . If the completion time of this job in
some machines is the same, select the machine with
the smaller number. For example, if machine M111

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

and machine M112 meet the requirements, machine
M111 is selected. What needs illustration is that jobs
are assigned to machines at the same priority at all
stages.

To further explain the decoding process, a pos-
sible solution for a case in Section 2 is given, which
consists of a factory string [2,2,1,1,2,1,1,2,2,1], a
sequence string [2,8,4,7,1,3,9,6,10,5] and a speed
string [2,4,1,5,5,5,3,1,4,1;5,2,1,5,2,4,1,4,2,5]. Ac-
cording to the factory string, J3,J4,J6,J7 and J10
are assigned to factory 1, and their sequence is
J4,J7,J3,J6 and J10 determined by the sequence
string. J4 is first arranged to a machine, and M111
and M112 can be chosen. No matter which machine
is selected, the completion time of J4 can be mini-
mized, and M111 is selected because of its smaller
number. Then J4 and J3 are assigned to M111 and
J7,J6,J10 are assigned to M112. In M111, the pro-
cessing speed of J4 and J3 is ω1,4 = 5 and ω1,3 = 1
respectively, so the processing time of J4 and J3 are
p41/Vω1,4 = 21.5 and p31/Vω1,3 = 88. In the same
way, the scheduling scheme can be obtained, and
the Gantt chart is shown in Figure 1, then Cmax =
195.885. In M111, the energy consumption of M111
equals to p41/Vω1,4 × ξ41 ×V 2

ω1,4
+p31/Vω1,3 × ξ31 ×

V 2
ω1,3

= 43/2×3×22+88/1×3×12 = 258+264=
522. Figure 2 provides the energy consumption of
each machine. After calculating the energy con-
sumption of all machines, the total energy con-
sumption can be available and T EC = 5702.83.

5.2 Global search

Global search is an indispensable and effective
method to generate new solutions in swarm intelli-
gence optimization algorithms. In SFLA, the repre-
sentation of global search is that one solution learns
from and moves to another solution to produce a
new solution. Algorithm 1 gives the global search
equation of SFLA in continuous space. Since the
solution space of DEHFSP is discrete, it is neces-
sary to design a global search for solutions for DE-
HFSP.

A global search GS(x,y) for DEHFSP is de-
signed, in which x,y represent two different solu-
tions, x is the optimized one, and y is the learned
one. x learns from y to get a new solution x′, and it
is expected that x can inherits the part of advantages
of y. The global search is described as follows: (1)

randomly determine a set Π of jobs; (2) for the fac-
tory string, the value of elements corresponding to
jobs of Π in x is changed to that in y; (3) for the
sequence string, rearrange the order of jobs in x be-
long to Π to match the order of this jobs in y; (4)
for the speed string, the value in x corresponding
to jobs in Π is adjusted to be the same as that in y.
Figure 3 provides the process of global search. It
can be found from Figure 3 that the new solution x′

varies greatly compared with x.

Figure 3. The process of global search

5.3 Local search

Local search is the operator that changes the
optimized solution slightly and includes insert and
swap commonly. Inserting or swapping jobs be-
tween different factories or within the same factory
can produce a new solution whose objectives differ
from the original solution.

An insert operator N1 and a swap operator N2
are designed to change the factory string and the se-
quence string. In N1, randomly choose jobs Ji and
Jj, i < j, and suppose πpos1 = i,πpos2 = j, then in-
sert πpos2 = j to position of πpos1 in the sequence
string and let θ j = θi. In N2, randomly choose jobs
Ji and Jj, i < j, and suppose πpos1 = i,πpos2 = j,
then swap the value πpos1 and πpos2 in the sequence
string and swap the value of θ j and θi in the factory
string.

In N1 and N2, the speed string does not change.
When the processing speed of jobs increases, the
energy consumption will increase, and the comple-
tion time will decrease; on the contrary, when the
processing speed of jobs decreases, the energy con-
sumption will decrease, and the completion time
will increase. Based on the above characteristics

110 Jingcao Cai and Lei Wang

of DEHFSP, N3 and N4 are designed to adjust the
speed string.

N3 is shown below. Randomly determine a set
Π of jobs and a randomly number k,k ∈ {1,2, ...,S}.
For each Ji ∈ Π, ωi,k = max{ωi,k −1,1}. N4 is sim-
ilar with N3, expect that ωi,k = min{ωi,k +1, |V |}.

Figure 4 depicts the process of generating new
solutions in N1, N2, N3 and N4.

Figure 4. The process of local search

5.4 Energy saving operator

Energy conservation is significant for reduc-
ing carbon emissions and environmental protection;
however, it is meaningless to consider energy sav-
ing only and ignore the production efficiency index
such as Cmax, which is related to the production ef-
ficiency of enterprises. Based on this, an energy-
saving operator is designed which can reduce T EC
without changing Cmax.

The energy-saving operator is described below.
For each job in each stage, the processing speed of
the job is reduced to the minimum value if meets
the following two conditions: (1) the start time of
the next job, which is processed on the machine
where the current job is located, is not changed; (2)
the start time of the current job in next stage is not
changed.

In order to better explain the energy-saving op-
erator, an example is given, and the solution is given
in Section 5.1. As can be seen from the Gantt chart
corresponding to this solution, J4 processed on M121
satisfies conditions of energy saving operator, and
the processing speed of J4 in stage 2 is adjusted
from 2.00 to 1.00. The Gantt chart before and after
adjustment is shown in Figure 5. From Figure 5, it

can be found that Cmax has not increased, and T EC
has been reduced from 5702.83 to 5559.33.

5.5 Q-learning process

Q-learning algorithm includes state set st , ac-
tion set at , reward function, and action selection
strategy. The environment state is determined by
the evaluation of the population, and actions are
represented by different search strategies; a new re-
ward function is designed, and the action selection
strategy uses the ε−greedy strategy.

Population P is a set of solutions, which include
N solutions, and the evaluation of population is the
key to using Q-learning. The evaluation value evi of
the generation t of P is defined as

evt =
N

∑
i=1

(
Ct,i

max −LBCmax

Cmax −LBCmax

+
T ECt,i −LBT EC

T EC−LBT EC
)/N

(25)

where Ct,i
max and T ECt,i represent the maximum

completion time and total energy consumption of
the ith solution of population P in the tth gen-
eration respectively and Cmax = max

i={1,2...,N}
{C1,i

max},

T EC = max
i={1,2...,N}

{T EC1,i}.

evt is basically in the interval [ev1,ev2] and let
ev1 = 0,ev2 = 2. The state set S = {1,2, ...,10}.
Divide the interval into 10 equal parts, and the
state value st = k if evt ∈ [0.2× (k − 1),0.2× k),
0 ≤ k ≤ 10 and at = 10 if evt ≥ 2.

Table 3. The corresponding relationship between
action and search method

Action search method Action search method

1 GS1+N1 9 GS3+N1
2 GS1+N2 10 GS3+N2
3 GS1+N3 11 GS3+N3
4 GS1+N4 12 GS3+N4
5 GS2+N1 13 GS4+N1
6 GS2+N2 14 GS4+N2
7 GS2+N3 15 GS4+N3
8 GS2+N4 16 GS4+N4

The variants of GS are built, which are GS1, GS2
and GS3. GS1, GS2, and GS3 are only changing one
string, and only the factory string is changed in GS1,
only the sequence string is altered in GS2, and only
the speed string is modified in GS3. The action set A
is constructed by using different global searches and
local searches. There are 4 global searches and 4 lo-

111Jingcao Cai and Lei Wang

of DEHFSP, N3 and N4 are designed to adjust the
speed string.

N3 is shown below. Randomly determine a set
Π of jobs and a randomly number k,k ∈ {1,2, ...,S}.
For each Ji ∈ Π, ωi,k = max{ωi,k −1,1}. N4 is sim-
ilar with N3, expect that ωi,k = min{ωi,k +1, |V |}.

Figure 4 depicts the process of generating new
solutions in N1, N2, N3 and N4.

Figure 4. The process of local search

5.4 Energy saving operator

Energy conservation is significant for reduc-
ing carbon emissions and environmental protection;
however, it is meaningless to consider energy sav-
ing only and ignore the production efficiency index
such as Cmax, which is related to the production ef-
ficiency of enterprises. Based on this, an energy-
saving operator is designed which can reduce T EC
without changing Cmax.

The energy-saving operator is described below.
For each job in each stage, the processing speed of
the job is reduced to the minimum value if meets
the following two conditions: (1) the start time of
the next job, which is processed on the machine
where the current job is located, is not changed; (2)
the start time of the current job in next stage is not
changed.

In order to better explain the energy-saving op-
erator, an example is given, and the solution is given
in Section 5.1. As can be seen from the Gantt chart
corresponding to this solution, J4 processed on M121
satisfies conditions of energy saving operator, and
the processing speed of J4 in stage 2 is adjusted
from 2.00 to 1.00. The Gantt chart before and after
adjustment is shown in Figure 5. From Figure 5, it

can be found that Cmax has not increased, and T EC
has been reduced from 5702.83 to 5559.33.

5.5 Q-learning process

Q-learning algorithm includes state set st , ac-
tion set at , reward function, and action selection
strategy. The environment state is determined by
the evaluation of the population, and actions are
represented by different search strategies; a new re-
ward function is designed, and the action selection
strategy uses the ε−greedy strategy.

Population P is a set of solutions, which include
N solutions, and the evaluation of population is the
key to using Q-learning. The evaluation value evi of
the generation t of P is defined as

evt =
N

∑
i=1

(
Ct,i

max −LBCmax

Cmax −LBCmax

+
T ECt,i −LBT EC

T EC−LBT EC
)/N

(25)

where Ct,i
max and T ECt,i represent the maximum

completion time and total energy consumption of
the ith solution of population P in the tth gen-
eration respectively and Cmax = max

i={1,2...,N}
{C1,i

max},

T EC = max
i={1,2...,N}

{T EC1,i}.

evt is basically in the interval [ev1,ev2] and let
ev1 = 0,ev2 = 2. The state set S = {1,2, ...,10}.
Divide the interval into 10 equal parts, and the
state value st = k if evt ∈ [0.2× (k − 1),0.2× k),
0 ≤ k ≤ 10 and at = 10 if evt ≥ 2.

Table 3. The corresponding relationship between
action and search method

Action search method Action search method

1 GS1+N1 9 GS3+N1
2 GS1+N2 10 GS3+N2
3 GS1+N3 11 GS3+N3
4 GS1+N4 12 GS3+N4
5 GS2+N1 13 GS4+N1
6 GS2+N2 14 GS4+N2
7 GS2+N3 15 GS4+N3
8 GS2+N4 16 GS4+N4

The variants of GS are built, which are GS1, GS2
and GS3. GS1, GS2, and GS3 are only changing one
string, and only the factory string is changed in GS1,
only the sequence string is altered in GS2, and only
the speed string is modified in GS3. The action set A
is constructed by using different global searches and
local searches. There are 4 global searches and 4 lo-

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

Figure 5. The Gantt chart before and after adjustment

cal searches, so there are 16 actions corresponding
to 16 combinations. The corresponding relationship
is shown in Table 3.

Action 1 is described as follows: GS1 is imple-
mented for xw and xb to generate xnew, and if xw

dominated xnew, GS1 is executed for xw and xg to
produce xnew, and if xw dominated xnew, N1 is ap-
plied to obtain xnew, then xw = xnew. The steps of
Action 2-16 are similar to Action 1, but use differ-
ent global search and local searches.

Since the st is smaller, the population is closer
to the Pareto front in the solution space, let rt+1 =
st+1 − st . Obviously, the positive gain is obtained
when using action at in state at to improve the state
of the population, and vice versa, the penalty is ob-
tained.

ε−greed is used directly to select an action, and
Equation (24) is used to update Q-table. Generally,
all elements of the initial Q-table are 0.

5.6 Algorithm description

QSFLA is an algorithm that combines SFLA
and Q-learning, and Q-learning is used in the pro-
cess of memeplexes search to choose suitable global
and local search. The main steps of QSFLA include
population initialization and Q-table initialization,
population division, memeplexes search with Q-
learning, Q-table update, energy saving operator,
population shuffling, and output results. Figure 6
shows the flow chart of QSFLA.

Figure 6. The flow chart of QSFLA

The initial population is randomly generated.
The initial Q-table is initialized to 0. In popula-
tion division, all solutions in the population are or-
dered according to the non-dominated sort rule in
NSGA-II. Then these solutions are sequentially as-
signed to each memeplex according to the rule to
Section 4.1. In memeplexes search, the state of the
population is first determined, and the combination
of global search and local search corresponding to
the action is selected according to ε− greed. Each
of the memeplexes performs µ searches. After the

112 Jingcao Cai and Lei Wang

memeplexes search, all solutions from all meme-
plexes first execute an energy saving operator and
then are shuffled to form a new population. The
result is output when the termination condition is
satisfied.

6 Computational experiments

All experiments are programmed using Vi-
sual Studio 2022 C++ and run on a computer
with 16.0G RAM 12th Gen Intel(R) Core(TM) i7-
12700H 2.70GHz.

6.1 Test instances

To test the performance of the proposed al-
gorithm, 140 instances are provided, which con-
sist of the different numbers of jobs, factories,
and stages, and these instances can download from
https://gitee.com/caijingcao/modhfsp114. n×F×S
represents the instance where there are n jobs, F
factories and S stages.

6.2 Comparative algorithms

In order to verify whether Q-learning plays
an active role in QSFLA, 16 variants of QSFLA
were designed, each of which only uses one action.
QSFLAv indicates the vth variant, which only uses
action v. For example, the combination of GS1+N1
is used in QSFLA1. Another major strategy of QS-
FLA is energy saving operator. QSFLAE− is given
to test the effectiveness of energy saving operator.
In addition, NSGA-II is selected as a comparative
algorithm, which is a classical multi-objective opti-
mization algorithm and has been successfully used
to solve a series of the multi-objective optimization
problem. Therefore, a total of 18 comparative al-
gorithms are selected to verify the performance of
QSFLA from different perspectives.

6.3 Performance evaluation metrics

The performance evaluation of multi-objective
algorithms mainly includes convergence, unifor-
mity, and spread.

Metric GD is used to calculate the convergence
index, which can evaluate the distance between the
solution set and Pareto optimal frontier. Metric GD
is defined as

GD(ΩA,Ω∗) =

√
∑

y∈ΩA

min
x∈Ω∗

dis(x,y)2

|ΩA|
(26)

where ΩA is the solution set obtained by algorithm
A, Ω∗ denotes the conference solution set, dis(x,y)2

represents the Euclidean distance between solution
x and y in the objective space.

Metric Spacing is used for evaluating the uni-
formity index, which is calculated as

Spacing(ΩA) =

√√√√ 1
|ΩA|

|ΩA|

∑
i=1

(d −di)
2

(27)

where di represents the minimum Euclidean dis-
tance between xi with other solution in ΩA and d
is the mean value of all di.

Metric ∆ΩA is estimated for spread index, which
is defined as

∆(ΩA) =

d f +dl +
|ΩA|
∑

i=1

∣∣di −d
∣∣

d f +dl + |ΩA| ·d
(28)

where d f and dl represent the minimum Euclidean
distance between the two boundary solutions of Ω∗

and ΩA, respectively.

Table 4. Parameters and their levels

Parameters

Factor level

1 2 3 4 5

N 30 60 90 120 150
s 2 3 5 6 10
µ 30 40 50 60 70
α 0.1 0.2 0.3 0.4 0.5
γ 0.6 0.7 0.8 0.9 1.0
ε 0.1 0.2 0.3 0.4 0.5

6.4 Parameter settings

QSFLA has seven main parameters: N, s, µ, α,
γ, ε and stopping condition. Although the longer
the algorithm runs, the more likely it is to get bet-
ter results, it is found through experiments that QS-
FLA and its comparison algorithm can converge
or hardly improve significantly after running for
0.1× S× n seconds, so we choose 0.1× S× n sec-
onds as the stopping condition for all algorithms to
make the comparison fair which is similar to other
studies.

Taguchi method is used to decide the settings of
other parameters[5]. Several instances with a differ-
ent number of jobs, factories, or stages are selected

113Jingcao Cai and Lei Wang

memeplexes search, all solutions from all meme-
plexes first execute an energy saving operator and
then are shuffled to form a new population. The
result is output when the termination condition is
satisfied.

6 Computational experiments

All experiments are programmed using Vi-
sual Studio 2022 C++ and run on a computer
with 16.0G RAM 12th Gen Intel(R) Core(TM) i7-
12700H 2.70GHz.

6.1 Test instances

To test the performance of the proposed al-
gorithm, 140 instances are provided, which con-
sist of the different numbers of jobs, factories,
and stages, and these instances can download from
https://gitee.com/caijingcao/modhfsp114. n×F×S
represents the instance where there are n jobs, F
factories and S stages.

6.2 Comparative algorithms

In order to verify whether Q-learning plays
an active role in QSFLA, 16 variants of QSFLA
were designed, each of which only uses one action.
QSFLAv indicates the vth variant, which only uses
action v. For example, the combination of GS1+N1
is used in QSFLA1. Another major strategy of QS-
FLA is energy saving operator. QSFLAE− is given
to test the effectiveness of energy saving operator.
In addition, NSGA-II is selected as a comparative
algorithm, which is a classical multi-objective opti-
mization algorithm and has been successfully used
to solve a series of the multi-objective optimization
problem. Therefore, a total of 18 comparative al-
gorithms are selected to verify the performance of
QSFLA from different perspectives.

6.3 Performance evaluation metrics

The performance evaluation of multi-objective
algorithms mainly includes convergence, unifor-
mity, and spread.

Metric GD is used to calculate the convergence
index, which can evaluate the distance between the
solution set and Pareto optimal frontier. Metric GD
is defined as

GD(ΩA,Ω∗) =

√
∑

y∈ΩA

min
x∈Ω∗

dis(x,y)2

|ΩA|
(26)

where ΩA is the solution set obtained by algorithm
A, Ω∗ denotes the conference solution set, dis(x,y)2

represents the Euclidean distance between solution
x and y in the objective space.

Metric Spacing is used for evaluating the uni-
formity index, which is calculated as

Spacing(ΩA) =

√√√√ 1
|ΩA|

|ΩA|

∑
i=1

(d −di)
2

(27)

where di represents the minimum Euclidean dis-
tance between xi with other solution in ΩA and d
is the mean value of all di.

Metric ∆ΩA is estimated for spread index, which
is defined as

∆(ΩA) =

d f +dl +
|ΩA|
∑

i=1

∣∣di −d
∣∣

d f +dl + |ΩA| ·d
(28)

where d f and dl represent the minimum Euclidean
distance between the two boundary solutions of Ω∗

and ΩA, respectively.

Table 4. Parameters and their levels

Parameters

Factor level

1 2 3 4 5

N 30 60 90 120 150
s 2 3 5 6 10
µ 30 40 50 60 70
α 0.1 0.2 0.3 0.4 0.5
γ 0.6 0.7 0.8 0.9 1.0
ε 0.1 0.2 0.3 0.4 0.5

6.4 Parameter settings

QSFLA has seven main parameters: N, s, µ, α,
γ, ε and stopping condition. Although the longer
the algorithm runs, the more likely it is to get bet-
ter results, it is found through experiments that QS-
FLA and its comparison algorithm can converge
or hardly improve significantly after running for
0.1× S× n seconds, so we choose 0.1× S× n sec-
onds as the stopping condition for all algorithms to
make the comparison fair which is similar to other
studies.

Taguchi method is used to decide the settings of
other parameters[5]. Several instances with a differ-
ent number of jobs, factories, or stages are selected

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

a) Main effects plot for means

b) Main effects plot for S/N ratios

Figure 7. Main effects plot for means and S/N ratios

for parameter experiments. The same settings can
be obtained by using these instances, and we show
the result of instance 80×4×4.

Table 4 exhibits the level of parameters. Table
5 provides the orthogonal array L25(56). Each com-
bination runs ten times independently, for instance
80×4×4, and then the obtained non-dominated so-
lutions are recorded. After all the combinations are
tested, the final non-dominated solution set is ob-
tained. The results of GD and S/N ratio are shown
in Figure 6.3 and 6.3, in which S/N ratio is defined
as −10× log10(DIR

2).

As shown in Figure 6.3 and 6.3, QSFLA with
N = 60, s = 5, µ = 60, α = 0.1, γ = 0.9 and ε = 0.2
performs better than QSFLA with other parameter
combinations, so the above settings are adopted.

All parameters of QSFLAE− and QSFLAv, v ∈
{1,2, ...,16}, adopt the same parameter combina-
tion with QSFLA in order to explain the role of
reinforcement learning and energy saving operator
more intuitively. All parameters of NSGA-II ex-
cept the stopping condition are directly obtained
from [7].

Table 5. The orthogonal L25(56)

Experiment Factor level
GDnumber N s µ α β ε

1 1 1 1 1 1 1 0.026
2 1 2 2 2 2 2 0.011
3 1 3 3 3 3 3 0.010
4 1 4 4 4 4 4 0.008
5 1 5 5 5 5 5 0.033
6 2 1 2 3 4 5 0.029
7 2 2 3 4 5 1 0.009
8 2 3 4 5 1 2 0.011
9 2 4 5 1 2 3 0.001

10 2 5 1 2 3 4 0.012
11 3 1 3 5 2 4 0.038
12 3 2 4 1 3 5 0.013
13 3 3 5 2 4 1 0.002
14 3 4 1 3 5 2 0.022
15 3 5 2 4 1 3 0.034
16 4 1 4 2 5 3 0.027
17 4 2 5 3 1 4 0.037
18 4 3 1 4 2 5 0.040
19 4 4 2 5 3 1 0.028
20 4 5 3 1 4 2 0.008
21 5 1 5 4 3 2 0.034
22 5 2 1 5 4 3 0.039
23 5 3 2 1 5 4 0.029
24 5 4 3 2 1 5 0.035
25 5 5 4 3 2 1 0.024

54321

42

40

38

36

34

32

30
54321 54321 54321 54321 54321

M
ea

n
of

 S
/N

 ra
tio

N s

54321

0.035

0.030

0.025

0.020

0.015

0.010
54321 54321 54321 54321 54321

M
ea

n
of

 M
ea

ns

N s

114 Jingcao Cai and Lei Wang

Table 6. Computational results on average GD
with different number of factories

F=2 F=3 F=4 F=5 F=6

QSFLA 0.000 0.000 0.000 0.000 0.000
QSFLA1 0.011 0.013 0.014 0.013 0.013
QSFLA2 0.009 0.010 0.011 0.011 0.011
QSFLA3 0.010 0.010 0.008 0.009 0.010
QSFLA4 0.008 0.009 0.011 0.010 0.010
QSFLA5 0.031 0.023 0.022 0.021 0.022
QSFLA6 0.031 0.021 0.017 0.016 0.017
QSFLA7 0.025 0.023 0.020 0.020 0.021
QSFLA8 0.022 0.019 0.018 0.018 0.019
QSFLA9 0.027 0.022 0.021 0.021 0.023
QSFLA10 0.027 0.025 0.021 0.022 0.025
QSFLA11 0.023 0.025 0.022 0.023 0.025
QSFLA12 0.023 0.024 0.023 0.023 0.024
QSFLA13 0.006 0.005 0.007 0.006 0.007
QSFLA14 0.006 0.006 0.006 0.007 0.008
QSFLA15 0.010 0.011 0.011 0.011 0.011
QSFLA16 0.009 0.010 0.013 0.012 0.013

Table 7. Computational results on average GD
with different number of jobs

N=20 N=40 N=60 N=80 N=100 N=120 N=140

QSFLA 0.000 0.000 0.000 0.000 0.000 0.000 0.000
QSFLA1 0.008 0.010 0.011 0.013 0.014 0.016 0.018
QSFLA2 0.007 0.007 0.008 0.011 0.014 0.013 0.015
QSFLA3 0.007 0.009 0.008 0.011 0.010 0.010 0.010
QSFLA4 0.007 0.009 0.009 0.010 0.011 0.011 0.011
QSFLA5 0.020 0.018 0.020 0.027 0.026 0.024 0.031
QSFLA6 0.016 0.014 0.014 0.025 0.025 0.021 0.026
QSFLA7 0.015 0.019 0.022 0.026 0.024 0.024 0.024
QSFLA8 0.018 0.018 0.018 0.022 0.021 0.018 0.020
QSFLA9 0.021 0.018 0.017 0.028 0.024 0.024 0.028
QSFLA10 0.021 0.017 0.019 0.026 0.027 0.027 0.032
QSFLA11 0.016 0.020 0.023 0.028 0.026 0.026 0.027
QSFLA12 0.022 0.019 0.024 0.027 0.025 0.023 0.024
QSFLA13 0.005 0.005 0.006 0.007 0.007 0.007 0.006
QSFLA14 0.005 0.006 0.006 0.007 0.008 0.007 0.006
QSFLA15 0.012 0.011 0.010 0.011 0.011 0.011 0.010
QSFLA16 0.012 0.013 0.012 0.011 0.011 0.010 0.011

Table 8. Computational results on average GD
with different number of stages

S=2 S=4 S=6 S=8

QSFLA 0.000 0.000 0.000 0.000
QSFLA1 0.011 0.013 0.014 0.013
QSFLA2 0.009 0.010 0.012 0.012
QSFLA3 0.008 0.010 0.010 0.009
QSFLA4 0.009 0.010 0.010 0.010
QSFLA5 0.025 0.024 0.025 0.022
QSFLA6 0.022 0.020 0.021 0.019
QSFLA7 0.019 0.023 0.023 0.022
QSFLA8 0.018 0.021 0.019 0.019
QSFLA9 0.024 0.024 0.022 0.021
QSFLA10 0.025 0.026 0.024 0.022
QSFLA11 0.025 0.025 0.024 0.021
QSFLA12 0.030 0.023 0.021 0.019
QSFLA13 0.004 0.006 0.007 0.007
QSFLA14 0.004 0.006 0.007 0.009
QSFLA15 0.011 0.011 0.011 0.010
QSFLA16 0.012 0.012 0.011 0.011

Table 9. Computational results on average
Spacing with different number of factories

F=2 F=3 F=4 F=5 F=6

QSFLA 0.010 0.013 0.012 0.014 0.015
QSFLA1 0.014 0.015 0.018 0.018 0.015
QSFLA2 0.014 0.015 0.013 0.013 0.014
QSFLA3 0.010 0.008 0.009 0.010 0.013
QSFLA4 0.011 0.011 0.010 0.012 0.013
QSFLA5 0.011 0.009 0.008 0.011 0.008
QSFLA6 0.010 0.010 0.007 0.008 0.010
QSFLA7 0.008 0.008 0.009 0.012 0.013
QSFLA8 0.012 0.008 0.009 0.011 0.013
QSFLA9 0.010 0.009 0.010 0.009 0.011
QSFLA10 0.006 0.010 0.011 0.013 0.012
QSFLA11 0.012 0.015 0.013 0.012 0.016
QSFLA12 0.007 0.013 0.010 0.010 0.011
QSFLA13 0.012 0.011 0.013 0.012 0.012
QSFLA14 0.011 0.014 0.013 0.016 0.013
QSFLA15 0.009 0.015 0.013 0.012 0.013
QSFLA16 0.013 0.010 0.020 0.014 0.013

Table 10. Computational results on average
Spacing with different number of jobs

N=20 N=40 N=60 N=80 N=100 N=120 N=140

QSFLA 0.017 0.014 0.012 0.013 0.013 0.010 0.010
QSFLA1 0.021 0.022 0.013 0.016 0.014 0.012 0.015
QSFLA2 0.018 0.013 0.012 0.014 0.013 0.012 0.014
QSFLA3 0.017 0.013 0.009 0.011 0.007 0.006 0.007
QSFLA4 0.015 0.015 0.011 0.011 0.010 0.008 0.010
QSFLA5 0.017 0.011 0.008 0.009 0.007 0.009 0.006
QSFLA6 0.017 0.014 0.009 0.010 0.005 0.005 0.005
QSFLA7 0.016 0.010 0.010 0.010 0.008 0.008 0.006
QSFLA8 0.019 0.012 0.012 0.010 0.008 0.006 0.007
QSFLA9 0.016 0.009 0.010 0.012 0.008 0.008 0.005
QSFLA10 0.016 0.011 0.014 0.010 0.006 0.010 0.006
QSFLA11 0.015 0.013 0.013 0.015 0.012 0.010 0.016
QSFLA12 0.018 0.011 0.009 0.013 0.010 0.007 0.005
QSFLA13 0.013 0.012 0.010 0.014 0.011 0.013 0.012
QSFLA14 0.014 0.015 0.017 0.014 0.018 0.009 0.008
QSFLA15 0.023 0.013 0.012 0.009 0.014 0.008 0.006
QSFLA16 0.016 0.021 0.017 0.015 0.010 0.009 0.011

Table 11. Computational results on average
Spacing with different number of stages

S=2 S=4 S=6 S=8

QSFLA 0.010 0.014 0.016 0.011
QSFLA1 0.019 0.019 0.014 0.012
QSFLA2 0.017 0.015 0.011 0.011
QSFLA3 0.011 0.012 0.009 0.008
QSFLA4 0.013 0.014 0.009 0.010
QSFLA5 0.011 0.008 0.010 0.008
QSFLA6 0.012 0.010 0.008 0.008
QSFLA7 0.011 0.008 0.010 0.010
QSFLA8 0.012 0.010 0.009 0.011
QSFLA9 0.014 0.009 0.008 0.009
QSFLA10 0.014 0.012 0.009 0.007
QSFLA11 0.014 0.012 0.014 0.014
QSFLA12 0.014 0.010 0.008 0.009
QSFLA13 0.012 0.014 0.012 0.010
QSFLA14 0.018 0.011 0.011 0.014
QSFLA15 0.018 0.010 0.010 0.011
QSFLA16 0.019 0.013 0.012 0.012

115Jingcao Cai and Lei Wang

Table 6. Computational results on average GD
with different number of factories

F=2 F=3 F=4 F=5 F=6

QSFLA 0.000 0.000 0.000 0.000 0.000
QSFLA1 0.011 0.013 0.014 0.013 0.013
QSFLA2 0.009 0.010 0.011 0.011 0.011
QSFLA3 0.010 0.010 0.008 0.009 0.010
QSFLA4 0.008 0.009 0.011 0.010 0.010
QSFLA5 0.031 0.023 0.022 0.021 0.022
QSFLA6 0.031 0.021 0.017 0.016 0.017
QSFLA7 0.025 0.023 0.020 0.020 0.021
QSFLA8 0.022 0.019 0.018 0.018 0.019
QSFLA9 0.027 0.022 0.021 0.021 0.023
QSFLA10 0.027 0.025 0.021 0.022 0.025
QSFLA11 0.023 0.025 0.022 0.023 0.025
QSFLA12 0.023 0.024 0.023 0.023 0.024
QSFLA13 0.006 0.005 0.007 0.006 0.007
QSFLA14 0.006 0.006 0.006 0.007 0.008
QSFLA15 0.010 0.011 0.011 0.011 0.011
QSFLA16 0.009 0.010 0.013 0.012 0.013

Table 7. Computational results on average GD
with different number of jobs

N=20 N=40 N=60 N=80 N=100 N=120 N=140

QSFLA 0.000 0.000 0.000 0.000 0.000 0.000 0.000
QSFLA1 0.008 0.010 0.011 0.013 0.014 0.016 0.018
QSFLA2 0.007 0.007 0.008 0.011 0.014 0.013 0.015
QSFLA3 0.007 0.009 0.008 0.011 0.010 0.010 0.010
QSFLA4 0.007 0.009 0.009 0.010 0.011 0.011 0.011
QSFLA5 0.020 0.018 0.020 0.027 0.026 0.024 0.031
QSFLA6 0.016 0.014 0.014 0.025 0.025 0.021 0.026
QSFLA7 0.015 0.019 0.022 0.026 0.024 0.024 0.024
QSFLA8 0.018 0.018 0.018 0.022 0.021 0.018 0.020
QSFLA9 0.021 0.018 0.017 0.028 0.024 0.024 0.028
QSFLA10 0.021 0.017 0.019 0.026 0.027 0.027 0.032
QSFLA11 0.016 0.020 0.023 0.028 0.026 0.026 0.027
QSFLA12 0.022 0.019 0.024 0.027 0.025 0.023 0.024
QSFLA13 0.005 0.005 0.006 0.007 0.007 0.007 0.006
QSFLA14 0.005 0.006 0.006 0.007 0.008 0.007 0.006
QSFLA15 0.012 0.011 0.010 0.011 0.011 0.011 0.010
QSFLA16 0.012 0.013 0.012 0.011 0.011 0.010 0.011

Table 8. Computational results on average GD
with different number of stages

S=2 S=4 S=6 S=8

QSFLA 0.000 0.000 0.000 0.000
QSFLA1 0.011 0.013 0.014 0.013
QSFLA2 0.009 0.010 0.012 0.012
QSFLA3 0.008 0.010 0.010 0.009
QSFLA4 0.009 0.010 0.010 0.010
QSFLA5 0.025 0.024 0.025 0.022
QSFLA6 0.022 0.020 0.021 0.019
QSFLA7 0.019 0.023 0.023 0.022
QSFLA8 0.018 0.021 0.019 0.019
QSFLA9 0.024 0.024 0.022 0.021
QSFLA10 0.025 0.026 0.024 0.022
QSFLA11 0.025 0.025 0.024 0.021
QSFLA12 0.030 0.023 0.021 0.019
QSFLA13 0.004 0.006 0.007 0.007
QSFLA14 0.004 0.006 0.007 0.009
QSFLA15 0.011 0.011 0.011 0.010
QSFLA16 0.012 0.012 0.011 0.011

Table 9. Computational results on average
Spacing with different number of factories

F=2 F=3 F=4 F=5 F=6

QSFLA 0.010 0.013 0.012 0.014 0.015
QSFLA1 0.014 0.015 0.018 0.018 0.015
QSFLA2 0.014 0.015 0.013 0.013 0.014
QSFLA3 0.010 0.008 0.009 0.010 0.013
QSFLA4 0.011 0.011 0.010 0.012 0.013
QSFLA5 0.011 0.009 0.008 0.011 0.008
QSFLA6 0.010 0.010 0.007 0.008 0.010
QSFLA7 0.008 0.008 0.009 0.012 0.013
QSFLA8 0.012 0.008 0.009 0.011 0.013
QSFLA9 0.010 0.009 0.010 0.009 0.011
QSFLA10 0.006 0.010 0.011 0.013 0.012
QSFLA11 0.012 0.015 0.013 0.012 0.016
QSFLA12 0.007 0.013 0.010 0.010 0.011
QSFLA13 0.012 0.011 0.013 0.012 0.012
QSFLA14 0.011 0.014 0.013 0.016 0.013
QSFLA15 0.009 0.015 0.013 0.012 0.013
QSFLA16 0.013 0.010 0.020 0.014 0.013

Table 10. Computational results on average
Spacing with different number of jobs

N=20 N=40 N=60 N=80 N=100 N=120 N=140

QSFLA 0.017 0.014 0.012 0.013 0.013 0.010 0.010
QSFLA1 0.021 0.022 0.013 0.016 0.014 0.012 0.015
QSFLA2 0.018 0.013 0.012 0.014 0.013 0.012 0.014
QSFLA3 0.017 0.013 0.009 0.011 0.007 0.006 0.007
QSFLA4 0.015 0.015 0.011 0.011 0.010 0.008 0.010
QSFLA5 0.017 0.011 0.008 0.009 0.007 0.009 0.006
QSFLA6 0.017 0.014 0.009 0.010 0.005 0.005 0.005
QSFLA7 0.016 0.010 0.010 0.010 0.008 0.008 0.006
QSFLA8 0.019 0.012 0.012 0.010 0.008 0.006 0.007
QSFLA9 0.016 0.009 0.010 0.012 0.008 0.008 0.005
QSFLA10 0.016 0.011 0.014 0.010 0.006 0.010 0.006
QSFLA11 0.015 0.013 0.013 0.015 0.012 0.010 0.016
QSFLA12 0.018 0.011 0.009 0.013 0.010 0.007 0.005
QSFLA13 0.013 0.012 0.010 0.014 0.011 0.013 0.012
QSFLA14 0.014 0.015 0.017 0.014 0.018 0.009 0.008
QSFLA15 0.023 0.013 0.012 0.009 0.014 0.008 0.006
QSFLA16 0.016 0.021 0.017 0.015 0.010 0.009 0.011

Table 11. Computational results on average
Spacing with different number of stages

S=2 S=4 S=6 S=8

QSFLA 0.010 0.014 0.016 0.011
QSFLA1 0.019 0.019 0.014 0.012
QSFLA2 0.017 0.015 0.011 0.011
QSFLA3 0.011 0.012 0.009 0.008
QSFLA4 0.013 0.014 0.009 0.010
QSFLA5 0.011 0.008 0.010 0.008
QSFLA6 0.012 0.010 0.008 0.008
QSFLA7 0.011 0.008 0.010 0.010
QSFLA8 0.012 0.010 0.009 0.011
QSFLA9 0.014 0.009 0.008 0.009
QSFLA10 0.014 0.012 0.009 0.007
QSFLA11 0.014 0.012 0.014 0.014
QSFLA12 0.014 0.010 0.008 0.009
QSFLA13 0.012 0.014 0.012 0.010
QSFLA14 0.018 0.011 0.011 0.014
QSFLA15 0.018 0.010 0.010 0.011
QSFLA16 0.019 0.013 0.012 0.012

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

Table 12. Computational results on average ∆ with
different number of factories

F=2 F=3 F=4 F=5 F=6

QSFLA 0.777 0.769 0.716 0.728 0.743
QSFLA1 0.964 0.969 0.964 0.955 0.939
QSFLA2 0.969 0.983 0.962 0.961 0.952
QSFLA3 0.888 0.882 0.849 0.865 0.859
QSFLA4 0.903 0.903 0.879 0.884 0.888
QSFLA5 0.975 0.972 0.962 0.960 0.946
QSFLA6 0.988 0.973 0.970 0.969 0.966
QSFLA7 0.912 0.906 0.905 0.902 0.899
QSFLA8 0.934 0.918 0.924 0.917 0.915
QSFLA9 0.980 0.977 0.966 0.964 0.956
QSFLA10 0.978 0.979 0.979 0.965 0.966
QSFLA11 0.952 0.945 0.922 0.922 0.914
QSFLA12 0.946 0.957 0.948 0.939 0.932
QSFLA13 0.962 0.957 0.940 0.925 0.880
QSFLA14 0.965 0.979 0.955 0.950 0.939
QSFLA15 0.892 0.901 0.871 0.849 0.859
QSFLA16 0.912 0.896 0.892 0.883 0.869

Table 13. Computational results on average ∆ with
different number of jobs

N=20 N=40 N=60 N=80 N=100 N=120 N=140

QSFLA 0.678 0.731 0.739 0.768 0.780 0.747 0.784
QSFLA1 0.863 0.948 0.956 0.985 0.984 0.976 0.995
QSFLA2 0.899 0.946 0.961 0.982 0.985 0.988 0.996
QSFLA3 0.812 0.848 0.867 0.884 0.883 0.887 0.900
QSFLA4 0.798 0.866 0.884 0.903 0.919 0.926 0.943
QSFLA5 0.888 0.952 0.966 0.976 0.985 0.989 0.986
QSFLA6 0.916 0.975 0.978 0.981 0.979 0.995 0.990
QSFLA7 0.849 0.884 0.898 0.915 0.920 0.931 0.936
QSFLA8 0.874 0.907 0.917 0.933 0.940 0.935 0.945
QSFLA9 0.905 0.952 0.973 0.978 0.990 0.992 0.989
QSFLA10 0.909 0.966 0.981 0.987 0.988 0.992 0.990
QSFLA11 0.843 0.894 0.926 0.938 0.965 0.958 0.991
QSFLA12 0.896 0.927 0.941 0.964 0.963 0.952 0.966
QSFLA13 0.836 0.897 0.935 0.962 0.978 0.980 0.939
QSFLA14 0.857 0.937 0.960 0.986 0.994 0.982 0.987
QSFLA15 0.839 0.851 0.870 0.867 0.910 0.892 0.892
QSFLA16 0.807 0.873 0.891 0.906 0.909 0.914 0.936

Table 14. Computational results on average ∆ with
different number of stages

S=2 S=4 S=6 S=8

QSFLA 0.747 0.762 0.767 0.711
QSFLA1 0.934 0.970 0.961 0.967
QSFLA2 0.946 0.974 0.965 0.975
QSFLA3 0.845 0.880 0.878 0.872
QSFLA4 0.846 0.899 0.909 0.911
QSFLA5 0.954 0.966 0.964 0.968
QSFLA6 0.975 0.981 0.967 0.970
QSFLA7 0.894 0.903 0.907 0.914
QSFLA8 0.923 0.924 0.917 0.923
QSFLA9 0.973 0.965 0.965 0.971
QSFLA10 0.971 0.980 0.970 0.971
QSFLA11 0.926 0.922 0.930 0.945
QSFLA12 0.956 0.947 0.936 0.938
QSFLA13 0.907 0.943 0.924 0.956
QSFLA14 0.952 0.949 0.966 0.963
QSFLA15 0.883 0.861 0.875 0.879
QSFLA16 0.879 0.879 0.899 0.906

Table 15. Computational results of QSFLA and
comparative algorithms on GD

Instance QSFLA QSFLAE NSGA-II Instance QSFLA QSFLAE NSGA-II

1 0.000 0.006 0.008 71 0.000 0.008 0.009
2 0.000 0.007 0.006 72 0.000 0.010 0.020
3 0.000 0.006 0.008 73 0.000 0.010 0.014
4 0.000 0.011 0.010 74 0.000 0.009 0.009
5 0.000 0.006 0.004 75 0.000 0.011 0.020
6 0.000 0.007 0.005 76 0.000 0.007 0.010
7 0.000 0.007 0.008 77 0.000 0.009 0.008
8 0.000 0.007 0.002 78 0.000 0.010 0.019
9 0.000 0.007 0.008 79 0.000 0.011 0.012
10 0.000 0.008 0.006 80 0.000 0.009 0.019
11 0.000 0.006 0.007 81 0.000 0.001 0.004
12 0.000 0.006 0.014 82 0.000 0.008 0.009
13 0.000 0.007 0.005 83 0.000 0.011 0.008
14 0.000 0.009 0.008 84 0.000 0.007 0.020
15 0.000 0.004 0.007 85 0.000 0.007 0.006
16 0.000 0.006 0.011 86 0.000 0.006 0.010
17 0.000 0.011 0.005 87 0.000 0.017 0.014
18 0.000 0.005 0.009 88 0.000 0.006 0.004
19 0.000 0.006 0.006 89 0.000 0.005 0.008
20 0.000 0.006 0.010 90 0.000 0.010 0.016
21 0.000 0.004 0.003 91 0.000 0.013 0.029
22 0.000 0.007 0.012 92 0.000 0.010 0.019
23 0.000 0.009 0.009 93 0.000 0.010 0.013
24 0.000 0.010 0.007 94 0.000 0.007 0.012
25 0.000 0.005 0.007 95 0.000 0.007 0.008
26 0.000 0.011 0.014 96 0.000 0.016 0.010
27 0.000 0.012 0.014 97 0.000 0.019 0.026
28 0.000 0.009 0.007 98 0.000 0.010 0.020
29 0.000 0.008 0.010 99 0.000 0.009 0.008
30 0.000 0.007 0.013 100 0.000 0.007 0.009
31 0.000 0.006 0.010 101 0.000 0.002 0.004
32 0.000 0.007 0.010 102 0.000 0.005 0.009
33 0.000 0.010 0.010 103 0.000 0.011 0.019
34 0.000 0.007 0.005 104 0.000 0.008 0.007
35 0.000 0.008 0.010 105 0.000 0.009 0.006
36 0.000 0.006 0.008 106 0.000 0.006 0.010
37 0.000 0.012 0.007 107 0.000 0.005 0.008
38 0.000 0.007 0.007 108 0.000 0.012 0.023
39 0.000 0.005 0.008 109 0.000 0.005 0.009
40 0.000 0.007 0.014 110 0.000 0.006 0.007
41 0.000 0.006 0.005 111 0.000 0.009 0.010
42 0.000 0.007 0.010 112 0.000 0.015 0.033
43 0.000 0.007 0.010 113 0.000 0.009 0.010
44 0.000 0.007 0.010 114 0.000 0.011 0.017
45 0.000 0.008 0.008 115 0.000 0.010 0.016
46 0.000 0.011 0.012 116 0.000 0.010 0.016
47 0.000 0.008 0.016 117 0.000 0.015 0.012
48 0.000 0.007 0.014 118 0.000 0.007 0.010
49 0.000 0.008 0.013 119 0.000 0.008 0.015
50 0.000 0.007 0.009 120 0.000 0.010 0.024
51 0.000 0.008 0.012 121 0.000 0.007 0.002
52 0.000 0.008 0.014 122 0.000 0.003 0.007
53 0.000 0.006 0.007 123 0.000 0.013 0.012
54 0.000 0.008 0.011 124 0.000 0.012 0.016
55 0.000 0.007 0.012 125 0.000 0.006 0.011
56 0.000 0.008 0.015 126 0.000 0.015 0.029
57 0.000 0.013 0.013 127 0.000 0.012 0.007
58 0.000 0.010 0.011 128 0.000 0.008 0.018
59 0.000 0.009 0.018 129 0.000 0.007 0.010
60 0.000 0.006 0.008 130 0.000 0.017 0.031
61 0.000 0.006 0.001 131 0.000 0.007 0.018
62 0.000 0.010 0.008 132 0.000 0.005 0.006
63 0.000 0.018 0.033 133 0.000 0.017 0.020
64 0.000 0.007 0.005 134 0.000 0.007 0.013
65 0.000 0.006 0.007 135 0.000 0.010 0.009
66 0.000 0.006 0.007 136 0.000 0.006 0.015
67 0.000 0.012 0.019 137 0.000 0.012 0.016
68 0.000 0.007 0.016 138 0.000 0.014 0.021
69 0.000 0.007 0.009 139 0.000 0.008 0.018
70 0.000 0.006 0.012 140 0.000 0.007 0.011

116 Jingcao Cai and Lei Wang

Table 16. Computational results of QSFLA and
comparative algorithms on Spacing

Instance QSFLA QSFLAE NSGA-II Instance QSFLA QSFLAE NSGA-II

1 0.009 0.009 0.022 71 0.013 0.007 0.008
2 0.011 0.017 0.008 72 0.015 0.015 0.009
3 0.019 0.012 0.019 73 0.012 0.026 0.031
4 0.019 0.011 0.014 74 0.020 0.009 0.010
5 0.013 0.009 0.007 75 0.023 0.009 0.012
6 0.037 0.015 0.024 76 0.009 0.009 0.005
7 0.030 0.012 0.010 77 0.011 0.012 0.012
8 0.010 0.009 0.007 78 0.015 0.027 0.004
9 0.010 0.011 0.023 79 0.014 0.008 0.008
10 0.012 0.012 0.015 80 0.009 0.006 0.012
11 0.016 0.009 0.015 81 0.004 0.004 0.004
12 0.012 0.008 0.024 82 0.017 0.009 0.007
13 0.010 0.014 0.034 83 0.010 0.010 0.002
14 0.010 0.027 0.065 84 0.006 0.008 0.010
15 0.019 0.010 0.011 85 0.006 0.007 0.004
16 0.022 0.013 0.012 86 0.006 0.007 0.008
17 0.021 0.016 0.021 87 0.021 0.008 0.015
18 0.025 0.018 0.018 88 0.025 0.012 0.007
19 0.029 0.008 0.016 89 0.005 0.007 0.012
20 0.011 0.009 0.010 90 0.013 0.059 0.020
21 0.007 0.014 0.008 91 0.024 0.008 0.005
22 0.010 0.012 0.011 92 0.010 0.008 0.009
23 0.009 0.007 0.014 93 0.014 0.012 0.009
24 0.012 0.008 0.008 94 0.010 0.020 0.005
25 0.008 0.011 0.017 95 0.016 0.011 0.004
26 0.010 0.036 0.008 96 0.012 0.012 0.006
27 0.028 0.008 0.034 97 0.024 0.011 0.013
28 0.011 0.036 0.011 98 0.011 0.024 0.026
29 0.008 0.009 0.027 99 0.008 0.009 0.011
30 0.013 0.010 0.008 100 0.017 0.009 0.005
31 0.014 0.006 0.021 101 0.005 0.009 0.004
32 0.010 0.024 0.006 102 0.004 0.010 0.008
33 0.019 0.028 0.009 103 0.009 0.006 0.004
34 0.021 0.018 0.028 104 0.005 0.009 0.006
35 0.030 0.009 0.012 105 0.006 0.009 0.014
36 0.009 0.009 0.024 106 0.007 0.008 0.003
37 0.013 0.014 0.019 107 0.015 0.005 0.008
38 0.012 0.008 0.018 108 0.006 0.011 0.004
39 0.015 0.010 0.021 109 0.007 0.008 0.010
40 0.012 0.012 0.021 110 0.010 0.009 0.020
41 0.006 0.006 0.009 111 0.016 0.017 0.011
42 0.016 0.009 0.009 112 0.013 0.022 0.033
43 0.014 0.011 0.004 113 0.009 0.007 0.010
44 0.015 0.009 0.011 114 0.014 0.007 0.007
45 0.013 0.010 0.005 115 0.008 0.010 0.017
46 0.018 0.009 0.020 116 0.011 0.008 0.003
47 0.007 0.010 0.015 117 0.013 0.011 0.005
48 0.007 0.010 0.022 118 0.008 0.007 0.004
49 0.010 0.017 0.005 119 0.013 0.008 0.056
50 0.010 0.010 0.007 120 0.012 0.008 0.018
51 0.019 0.014 0.008 121 0.005 0.005 0.008
52 0.007 0.006 0.010 122 0.005 0.006 0.005
53 0.011 0.009 0.011 123 0.010 0.007 0.007
54 0.007 0.021 0.057 124 0.008 0.009 0.003
55 0.009 0.009 0.014 125 0.012 0.008 0.011
56 0.012 0.018 0.049 126 0.010 0.010 0.009
57 0.009 0.014 0.049 127 0.007 0.008 0.018
58 0.031 0.010 0.004 128 0.010 0.005 0.003
59 0.016 0.028 0.015 129 0.006 0.007 0.021
60 0.009 0.015 0.003 130 0.021 0.008 0.004
61 0.013 0.013 0.004 131 0.005 0.006 0.019
62 0.011 0.011 0.012 132 0.006 0.009 0.004
63 0.020 0.011 0.029 133 0.008 0.010 0.011
64 0.007 0.012 0.006 134 0.019 0.006 0.006
65 0.011 0.010 0.017 135 0.009 0.021 0.009
66 0.010 0.008 0.010 136 0.014 0.008 0.008
67 0.014 0.014 0.012 137 0.011 0.006 0.031
68 0.007 0.019 0.005 138 0.009 0.010 0.022
69 0.008 0.007 0.010 139 0.025 0.007 0.025
70 0.011 0.006 0.028 140 0.006 0.010 0.007

Table 17. Computational results of QSFLA and its
2 comparative algorithms on ∆

Instance QSFLA QSFLAE NSGA-II Instance QSFLA QSFLAE NSGA-II

1 0.594 0.533 0.825 71 0.716 0.740 0.940
2 0.650 0.761 0.940 72 0.691 0.797 0.965
3 0.735 0.730 0.935 73 0.725 0.795 0.942
4 0.678 0.609 0.931 74 0.819 0.756 0.971
5 0.695 0.668 0.876 75 0.769 0.727 0.916
6 0.835 0.767 0.912 76 0.708 0.800 0.961
7 0.825 0.783 0.932 77 0.771 0.620 0.899
8 0.614 0.717 0.923 78 0.793 0.759 0.876
9 0.654 0.678 0.978 79 0.589 0.794 0.979
10 0.581 0.638 0.868 80 0.693 0.712 0.967
11 0.682 0.752 0.899 81 0.666 0.793 0.919
12 0.602 0.685 0.906 82 0.921 0.770 0.952
13 0.545 0.648 0.882 83 0.787 0.817 0.950
14 0.605 0.750 1.042 84 0.693 0.818 0.979
15 0.687 0.787 0.940 85 0.775 0.737 0.932
16 0.777 0.762 0.831 86 0.766 0.796 0.954
17 0.665 0.689 0.839 87 0.835 0.769 0.992
18 0.803 0.782 0.877 88 0.765 0.824 0.984
19 0.768 0.733 0.824 89 0.776 0.710 0.945
20 0.571 0.664 0.918 90 0.822 0.958 0.995
21 0.714 0.764 0.863 91 0.929 0.764 0.974
22 0.696 0.719 0.938 92 0.779 0.806 0.981
23 0.626 0.672 0.946 93 0.792 0.787 0.924
24 0.796 0.725 0.968 94 0.723 0.721 0.947
25 0.799 0.704 0.920 95 0.741 0.746 0.967
26 0.795 0.917 0.906 96 0.784 0.730 0.969
27 0.873 0.647 0.978 97 0.857 0.781 0.918
28 0.726 0.864 0.908 98 0.803 0.858 0.961
29 0.672 0.704 1.020 99 0.647 0.741 0.953
30 0.739 0.712 0.895 100 0.744 0.823 0.964
31 0.731 0.769 0.980 101 0.700 0.814 0.940
32 0.645 0.902 0.939 102 0.712 0.819 0.951
33 0.825 0.786 0.863 103 0.954 0.895 0.978
34 0.765 0.841 0.988 104 0.598 0.845 0.973
35 0.788 0.787 0.910 105 0.762 0.789 0.966
36 0.626 0.786 1.000 106 0.733 0.736 0.959
37 0.759 0.773 0.812 107 0.762 0.791 0.966
38 0.625 0.660 0.944 108 0.680 0.828 0.975
39 0.797 0.812 0.870 109 0.734 0.840 0.952
40 0.623 0.810 0.969 110 0.749 0.757 0.997
41 0.682 0.741 0.913 111 0.813 0.874 0.990
42 0.736 0.786 0.910 112 0.718 0.822 0.998
43 0.823 0.725 0.906 113 0.722 0.755 0.929
44 0.915 0.805 0.976 114 0.858 0.746 0.966
45 0.818 0.759 0.916 115 0.657 0.796 0.953
46 0.847 0.788 0.971 116 0.784 0.761 0.960
47 0.650 0.786 0.948 117 0.781 0.748 0.948
48 0.642 0.730 0.959 118 0.796 0.731 0.930
49 0.794 0.759 0.850 119 0.718 0.776 1.043
50 0.637 0.785 0.929 120 0.703 0.765 0.973
51 0.777 0.738 0.922 121 0.954 0.800 0.993
52 0.597 0.740 0.985 122 0.711 0.837 0.947
53 0.739 0.766 0.904 123 0.911 0.827 0.967
54 0.643 0.857 1.067 124 0.936 0.850 0.988
55 0.645 0.685 0.939 125 0.807 0.786 0.939
56 0.725 0.747 0.999 126 0.834 0.874 0.980
57 0.602 0.779 1.018 127 0.769 0.786 0.983
58 0.933 0.804 0.916 128 0.818 0.768 0.959
59 0.909 0.764 0.963 129 0.649 0.775 0.999
60 0.665 0.851 0.957 130 0.943 0.867 0.974
61 1.004 0.852 0.970 131 0.543 0.758 1.000
62 0.865 0.851 0.962 132 0.680 0.830 0.977
63 1.004 0.727 0.975 133 0.708 0.756 0.962
64 0.706 0.914 0.975 134 0.691 0.689 0.973
65 0.899 0.788 0.960 135 0.713 0.864 0.995
66 0.741 0.756 0.964 136 0.810 0.787 0.991
67 0.807 0.812 0.938 137 0.770 0.717 1.043
68 0.671 0.830 0.921 138 0.842 0.848 0.938
69 0.743 0.682 0.951 139 0.875 0.750 0.994
70 0.644 0.741 1.017 140 0.709 0.802 0.969

6.5 Impact of Q-learning

QSFLA and its 16 variants randomly run ten
times on each instance to avoid the unfairness
caused by the randomness of algorithms. Table 6-
14 shows the computational results. Figure 8 pro-
vides the boxplot.

117Jingcao Cai and Lei Wang

Table 16. Computational results of QSFLA and
comparative algorithms on Spacing

Instance QSFLA QSFLAE NSGA-II Instance QSFLA QSFLAE NSGA-II

1 0.009 0.009 0.022 71 0.013 0.007 0.008
2 0.011 0.017 0.008 72 0.015 0.015 0.009
3 0.019 0.012 0.019 73 0.012 0.026 0.031
4 0.019 0.011 0.014 74 0.020 0.009 0.010
5 0.013 0.009 0.007 75 0.023 0.009 0.012
6 0.037 0.015 0.024 76 0.009 0.009 0.005
7 0.030 0.012 0.010 77 0.011 0.012 0.012
8 0.010 0.009 0.007 78 0.015 0.027 0.004
9 0.010 0.011 0.023 79 0.014 0.008 0.008
10 0.012 0.012 0.015 80 0.009 0.006 0.012
11 0.016 0.009 0.015 81 0.004 0.004 0.004
12 0.012 0.008 0.024 82 0.017 0.009 0.007
13 0.010 0.014 0.034 83 0.010 0.010 0.002
14 0.010 0.027 0.065 84 0.006 0.008 0.010
15 0.019 0.010 0.011 85 0.006 0.007 0.004
16 0.022 0.013 0.012 86 0.006 0.007 0.008
17 0.021 0.016 0.021 87 0.021 0.008 0.015
18 0.025 0.018 0.018 88 0.025 0.012 0.007
19 0.029 0.008 0.016 89 0.005 0.007 0.012
20 0.011 0.009 0.010 90 0.013 0.059 0.020
21 0.007 0.014 0.008 91 0.024 0.008 0.005
22 0.010 0.012 0.011 92 0.010 0.008 0.009
23 0.009 0.007 0.014 93 0.014 0.012 0.009
24 0.012 0.008 0.008 94 0.010 0.020 0.005
25 0.008 0.011 0.017 95 0.016 0.011 0.004
26 0.010 0.036 0.008 96 0.012 0.012 0.006
27 0.028 0.008 0.034 97 0.024 0.011 0.013
28 0.011 0.036 0.011 98 0.011 0.024 0.026
29 0.008 0.009 0.027 99 0.008 0.009 0.011
30 0.013 0.010 0.008 100 0.017 0.009 0.005
31 0.014 0.006 0.021 101 0.005 0.009 0.004
32 0.010 0.024 0.006 102 0.004 0.010 0.008
33 0.019 0.028 0.009 103 0.009 0.006 0.004
34 0.021 0.018 0.028 104 0.005 0.009 0.006
35 0.030 0.009 0.012 105 0.006 0.009 0.014
36 0.009 0.009 0.024 106 0.007 0.008 0.003
37 0.013 0.014 0.019 107 0.015 0.005 0.008
38 0.012 0.008 0.018 108 0.006 0.011 0.004
39 0.015 0.010 0.021 109 0.007 0.008 0.010
40 0.012 0.012 0.021 110 0.010 0.009 0.020
41 0.006 0.006 0.009 111 0.016 0.017 0.011
42 0.016 0.009 0.009 112 0.013 0.022 0.033
43 0.014 0.011 0.004 113 0.009 0.007 0.010
44 0.015 0.009 0.011 114 0.014 0.007 0.007
45 0.013 0.010 0.005 115 0.008 0.010 0.017
46 0.018 0.009 0.020 116 0.011 0.008 0.003
47 0.007 0.010 0.015 117 0.013 0.011 0.005
48 0.007 0.010 0.022 118 0.008 0.007 0.004
49 0.010 0.017 0.005 119 0.013 0.008 0.056
50 0.010 0.010 0.007 120 0.012 0.008 0.018
51 0.019 0.014 0.008 121 0.005 0.005 0.008
52 0.007 0.006 0.010 122 0.005 0.006 0.005
53 0.011 0.009 0.011 123 0.010 0.007 0.007
54 0.007 0.021 0.057 124 0.008 0.009 0.003
55 0.009 0.009 0.014 125 0.012 0.008 0.011
56 0.012 0.018 0.049 126 0.010 0.010 0.009
57 0.009 0.014 0.049 127 0.007 0.008 0.018
58 0.031 0.010 0.004 128 0.010 0.005 0.003
59 0.016 0.028 0.015 129 0.006 0.007 0.021
60 0.009 0.015 0.003 130 0.021 0.008 0.004
61 0.013 0.013 0.004 131 0.005 0.006 0.019
62 0.011 0.011 0.012 132 0.006 0.009 0.004
63 0.020 0.011 0.029 133 0.008 0.010 0.011
64 0.007 0.012 0.006 134 0.019 0.006 0.006
65 0.011 0.010 0.017 135 0.009 0.021 0.009
66 0.010 0.008 0.010 136 0.014 0.008 0.008
67 0.014 0.014 0.012 137 0.011 0.006 0.031
68 0.007 0.019 0.005 138 0.009 0.010 0.022
69 0.008 0.007 0.010 139 0.025 0.007 0.025
70 0.011 0.006 0.028 140 0.006 0.010 0.007

Table 17. Computational results of QSFLA and its
2 comparative algorithms on ∆

Instance QSFLA QSFLAE NSGA-II Instance QSFLA QSFLAE NSGA-II

1 0.594 0.533 0.825 71 0.716 0.740 0.940
2 0.650 0.761 0.940 72 0.691 0.797 0.965
3 0.735 0.730 0.935 73 0.725 0.795 0.942
4 0.678 0.609 0.931 74 0.819 0.756 0.971
5 0.695 0.668 0.876 75 0.769 0.727 0.916
6 0.835 0.767 0.912 76 0.708 0.800 0.961
7 0.825 0.783 0.932 77 0.771 0.620 0.899
8 0.614 0.717 0.923 78 0.793 0.759 0.876
9 0.654 0.678 0.978 79 0.589 0.794 0.979
10 0.581 0.638 0.868 80 0.693 0.712 0.967
11 0.682 0.752 0.899 81 0.666 0.793 0.919
12 0.602 0.685 0.906 82 0.921 0.770 0.952
13 0.545 0.648 0.882 83 0.787 0.817 0.950
14 0.605 0.750 1.042 84 0.693 0.818 0.979
15 0.687 0.787 0.940 85 0.775 0.737 0.932
16 0.777 0.762 0.831 86 0.766 0.796 0.954
17 0.665 0.689 0.839 87 0.835 0.769 0.992
18 0.803 0.782 0.877 88 0.765 0.824 0.984
19 0.768 0.733 0.824 89 0.776 0.710 0.945
20 0.571 0.664 0.918 90 0.822 0.958 0.995
21 0.714 0.764 0.863 91 0.929 0.764 0.974
22 0.696 0.719 0.938 92 0.779 0.806 0.981
23 0.626 0.672 0.946 93 0.792 0.787 0.924
24 0.796 0.725 0.968 94 0.723 0.721 0.947
25 0.799 0.704 0.920 95 0.741 0.746 0.967
26 0.795 0.917 0.906 96 0.784 0.730 0.969
27 0.873 0.647 0.978 97 0.857 0.781 0.918
28 0.726 0.864 0.908 98 0.803 0.858 0.961
29 0.672 0.704 1.020 99 0.647 0.741 0.953
30 0.739 0.712 0.895 100 0.744 0.823 0.964
31 0.731 0.769 0.980 101 0.700 0.814 0.940
32 0.645 0.902 0.939 102 0.712 0.819 0.951
33 0.825 0.786 0.863 103 0.954 0.895 0.978
34 0.765 0.841 0.988 104 0.598 0.845 0.973
35 0.788 0.787 0.910 105 0.762 0.789 0.966
36 0.626 0.786 1.000 106 0.733 0.736 0.959
37 0.759 0.773 0.812 107 0.762 0.791 0.966
38 0.625 0.660 0.944 108 0.680 0.828 0.975
39 0.797 0.812 0.870 109 0.734 0.840 0.952
40 0.623 0.810 0.969 110 0.749 0.757 0.997
41 0.682 0.741 0.913 111 0.813 0.874 0.990
42 0.736 0.786 0.910 112 0.718 0.822 0.998
43 0.823 0.725 0.906 113 0.722 0.755 0.929
44 0.915 0.805 0.976 114 0.858 0.746 0.966
45 0.818 0.759 0.916 115 0.657 0.796 0.953
46 0.847 0.788 0.971 116 0.784 0.761 0.960
47 0.650 0.786 0.948 117 0.781 0.748 0.948
48 0.642 0.730 0.959 118 0.796 0.731 0.930
49 0.794 0.759 0.850 119 0.718 0.776 1.043
50 0.637 0.785 0.929 120 0.703 0.765 0.973
51 0.777 0.738 0.922 121 0.954 0.800 0.993
52 0.597 0.740 0.985 122 0.711 0.837 0.947
53 0.739 0.766 0.904 123 0.911 0.827 0.967
54 0.643 0.857 1.067 124 0.936 0.850 0.988
55 0.645 0.685 0.939 125 0.807 0.786 0.939
56 0.725 0.747 0.999 126 0.834 0.874 0.980
57 0.602 0.779 1.018 127 0.769 0.786 0.983
58 0.933 0.804 0.916 128 0.818 0.768 0.959
59 0.909 0.764 0.963 129 0.649 0.775 0.999
60 0.665 0.851 0.957 130 0.943 0.867 0.974
61 1.004 0.852 0.970 131 0.543 0.758 1.000
62 0.865 0.851 0.962 132 0.680 0.830 0.977
63 1.004 0.727 0.975 133 0.708 0.756 0.962
64 0.706 0.914 0.975 134 0.691 0.689 0.973
65 0.899 0.788 0.960 135 0.713 0.864 0.995
66 0.741 0.756 0.964 136 0.810 0.787 0.991
67 0.807 0.812 0.938 137 0.770 0.717 1.043
68 0.671 0.830 0.921 138 0.842 0.848 0.938
69 0.743 0.682 0.951 139 0.875 0.750 0.994
70 0.644 0.741 1.017 140 0.709 0.802 0.969

6.5 Impact of Q-learning

QSFLA and its 16 variants randomly run ten
times on each instance to avoid the unfairness
caused by the randomness of algorithms. Table 6-
14 shows the computational results. Figure 8 pro-
vides the boxplot.

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

According to the number of factories, these in-
stances are divided into five groups, each group
contains 28 instances, and the average GD in each
group is shown in Table 6. Table 7 provides the
average GD in 7 groups, and these groups are di-
vided according to the number of jobs, and each
group contains 20 instances. Table 8 provides the
average GD in 4 groups, and these groups are di-
vided according to the number of stages, and each
group contains 35 instances. As shown in Table
6, in any group, regardless of F equals 2, 3, 4,
5, or 6, QSFLA can obtain a smaller average GD
than its variants, indicating that the performance of
convergence of the algorithm deteriorates when the
Q-learning strategy is eliminated. A single search
strategy combination is used. As exhibited in Table
7-8, the average GD of QSFLA is less than that of
16 variants in the same group, and the same conclu-
sion can be obtained.

Tables 9-11 display the average Spacing in each
group divided according to the number of factories,
jobs, and stages, and Tables 10-12 exhibit the aver-
age ∆. As shown in Tables 12-14, QSFLA can ob-
tain the smaller average Spacing than its variants,
so the performance of uniformity of QSFLA dete-
riorates when the Q-learning strategy is eliminated.
QSFLA can obtain the average ∆ close to those of
its variants. The statistical results in Figure 8 also
indicates the superior performance of QSFLA.

The above analysis shows that reinforcement
learning plays a positive role in QSFLA because
a single search strategy has limitations. A reason-
able choice of multiple search combinations in the
different stages can avoid such limitations and im-
prove the search performance of the algorithm.

6.6 Impact of energy saving operator

QSFLAE− randomly runs ten times on each in-
stance like QSFLA. Table 15-17 provide the com-
putational results on GD, Spacing and ∆. As shown
in Table 15, GD of QSFLA is less than that of
QSFLAE− on 140 instances, so QSFLA converges
better than QSFLAE− in all instances. As stated in
Table 16, Spacing of QSFLA is smaller than that
of QSFLAE− on 140 instances, hence the distribu-
tion of non-dominated solutions of QSFLA is more
uniform than that of QSFLAE−. As exhibited in Ta-
ble 17, ∆ of QSFLA is closed to that of QSFLAE−

on 140 instances, therefor the distribution of non-

dominated solutions of QSFLA is expansive. The
statistical results in Figure 8 also illustrates the su-
perior performance of QSFLA.

Energy saving strategy can reduce energy con-
sumption as much as possible without increasing
the maximum completion time, which reduces the
search resources and improves the search efficiency,
and this strategy has a positive effect on QSFLA.

6.7 Results and analyses

Through the previous analysis, it is evident that
reinforcement learning plays a proactive role in
QSFLA, and the energy-saving operator also con-
tributes positively. To further validate the perfor-
mance of QSFLA, a comparative analysis is con-
ducted between QSFLA and NSGA-II, the classical
multi-objective optimization algorithm. NSGA-II
randomly runs ten times on 140 instance. Table 6-
14 shows the computational results of GD, Spacing
and ∆. Figure 8 provides the statistical results in the
form of a box plot.

As shown in Table 6-14, the GD of QSFLA are
smaller than that of NSGA-II on all instances, the
Spacing of QSFLA are smaller than that of NSGA-
II on more than half of all instances, and ∆ of QS-
FLA are closed to that of NSGA-II. The statistical
results of Figure 8 also explains the superior per-
formance of QSFLA. So, QSFLA has good perfor-
mance in convergence, uniformity, and spread.

The excellent performance of QSFLA mainly
benefits from its Q-learning process. The Q-
learning process is used to adjust 16 search strate-
gies and enhance the search ability dynamically.
Each strategy is composed of global search and
neighborhood search, which can balance explo-
ration and development well. The energy-saving
operator offers the possibility of rapidly reducing
energy consumption without reducing production
efficiency. Therefore, based on the above analysis,
QSFLA is a very competitive method to solve DE-
HFSP.

(a) The plot box of 19 algorithms on metric GD

118 Jingcao Cai and Lei Wang

(b) The plot box of 19 algorithms on metric Spacing

(c) The plot box of 19 algorithms on metric ∆

Figure 8. The plot box of 19 algorithms on metric
GD, Spacing and ∆

7 Conclusion

The research on DHFSP has received increasing
attention in recent years, but the research on DE-
HFSP has not attracted enough attention. To solve
DEHFSP, a mathematical model is established, the
lower bound of two optimization objectives is given
and proved, and then QSFLA is proposed to mini-
mize maximum completion time and total energy
consumption. In the Q-learning process, an ac-
tion is selected according to the state of the cur-
rent population after evaluation. Each action in-
cludes a global search and a local search. After the
memeplexes search, all solutions from all meme-
plexes first execute an energy-saving operator and
then are shuffled to form a new population. The
computational results prove that the Q-learning pro-
cess does have a positive effect, and QSFLA can
provide promising results for DEHFSP.

It is a new exploration to combine reinforce-
ment learning and swarm intelligent optimization
algorithms to solve shop scheduling problems. In
a swarm intelligent optimization algorithm, a se-
ries of methods such as adjusting parameter value,
adjusting search strategy, adjusting learning object,
and adjusting optimization object by using rein-
forcement learning dynamic are worth exploring.
Distributed shop scheduling with high efficiency
and energy saving is also a challenge facing the cur-
rent manufacturing industry. We will continue to
study distributed shop scheduling in the future.

Acknowledgments

This work was supported by the Research Ini-
tiation Foundation of Anhui Polytechnic Univer-
sity (2022YQQ002), Anhui Polytechnic Univer-
sity Research Project (Xjky2022002), the Open
Research Fund of AnHui Key Laboratory of De-
tection Technology and Energy Saving Devices
(JCKJ2022B01), Key Natural Science Research
Projects of Colleges and Universities in Anhui
Province (2023AH050935, 2022AH050978), An-
hui Province University Excellent Top Talent Train-
ing Project(gxbjZD2022023), Wuhu science and
technology project (2022jc26), the Open Research
Fund of Anhui Province Key Laboratory of Detec-
tion Technology and Energy Saving Devices, Anhui
Polytechnic University (JCKJ2021A06) and An-
hui Polytechnic University-Jiujiang District Indus-
trial Collaborative Innovation Special Fund Project
(2022cyxtb6).

References
[1] J. C. Cai and D. M. Lei. A cooperated shuf-

fled frog-leaping algorithm for distributed energy-
efficient hybrid flow shop scheduling with fuzzy
processing time. Complex & Intelligent Systems,
7(5):2235–2253, 2021.

[2] J. C. Cai, R. Zhou, and D. M. Lei. Dynamic shuf-
fled frog-leaping algorithm for distributed hybrid
flow shop scheduling with multiprocessor tasks.
Engineering Applications of Artificial Intelligence,
90:103540, 2020.

[3] J. C. Cai, R. Zhou, and D. M. Lei. Fuzzy dis-
tributed two-stage hybrid flow shop scheduling
problem with setup time: collaborative variable
search. Journal of Intelligent & Fuzzy Systems,
38(3):3189–3199, 2020.

[4] J.C. Cai, D.M Lei, and M. Li. A shuffled frog-
leaping algorithm with memeplex quality for bi-
objective distributed scheduling in hybrid flow
shop. International Journal of Production Re-
search, 59(18):5404–5421, 2020.

[5] J.C. Cai, D.M Lei, J. Wang, and L. Wang. A novel
shuffled frog-leaping algorithm with reinforcement
learning for distributed assembly hybrid flow shop
scheduling. International Journal of Production Re-
search, 61(4):1233-1251, 2023.

[6] R.H. Chen, B. Yang, S. Li, and S.l. Wang. A self-
learning genetic algorithm based on reinforcement
learning for flexible job-shop scheduling problem.

119Jingcao Cai and Lei Wang

(b) The plot box of 19 algorithms on metric Spacing

(c) The plot box of 19 algorithms on metric ∆

Figure 8. The plot box of 19 algorithms on metric
GD, Spacing and ∆

7 Conclusion

The research on DHFSP has received increasing
attention in recent years, but the research on DE-
HFSP has not attracted enough attention. To solve
DEHFSP, a mathematical model is established, the
lower bound of two optimization objectives is given
and proved, and then QSFLA is proposed to mini-
mize maximum completion time and total energy
consumption. In the Q-learning process, an ac-
tion is selected according to the state of the cur-
rent population after evaluation. Each action in-
cludes a global search and a local search. After the
memeplexes search, all solutions from all meme-
plexes first execute an energy-saving operator and
then are shuffled to form a new population. The
computational results prove that the Q-learning pro-
cess does have a positive effect, and QSFLA can
provide promising results for DEHFSP.

It is a new exploration to combine reinforce-
ment learning and swarm intelligent optimization
algorithms to solve shop scheduling problems. In
a swarm intelligent optimization algorithm, a se-
ries of methods such as adjusting parameter value,
adjusting search strategy, adjusting learning object,
and adjusting optimization object by using rein-
forcement learning dynamic are worth exploring.
Distributed shop scheduling with high efficiency
and energy saving is also a challenge facing the cur-
rent manufacturing industry. We will continue to
study distributed shop scheduling in the future.

Acknowledgments

This work was supported by the Research Ini-
tiation Foundation of Anhui Polytechnic Univer-
sity (2022YQQ002), Anhui Polytechnic Univer-
sity Research Project (Xjky2022002), the Open
Research Fund of AnHui Key Laboratory of De-
tection Technology and Energy Saving Devices
(JCKJ2022B01), Key Natural Science Research
Projects of Colleges and Universities in Anhui
Province (2023AH050935, 2022AH050978), An-
hui Province University Excellent Top Talent Train-
ing Project(gxbjZD2022023), Wuhu science and
technology project (2022jc26), the Open Research
Fund of Anhui Province Key Laboratory of Detec-
tion Technology and Energy Saving Devices, Anhui
Polytechnic University (JCKJ2021A06) and An-
hui Polytechnic University-Jiujiang District Indus-
trial Collaborative Innovation Special Fund Project
(2022cyxtb6).

References
[1] J. C. Cai and D. M. Lei. A cooperated shuf-

fled frog-leaping algorithm for distributed energy-
efficient hybrid flow shop scheduling with fuzzy
processing time. Complex & Intelligent Systems,
7(5):2235–2253, 2021.

[2] J. C. Cai, R. Zhou, and D. M. Lei. Dynamic shuf-
fled frog-leaping algorithm for distributed hybrid
flow shop scheduling with multiprocessor tasks.
Engineering Applications of Artificial Intelligence,
90:103540, 2020.

[3] J. C. Cai, R. Zhou, and D. M. Lei. Fuzzy dis-
tributed two-stage hybrid flow shop scheduling
problem with setup time: collaborative variable
search. Journal of Intelligent & Fuzzy Systems,
38(3):3189–3199, 2020.

[4] J.C. Cai, D.M Lei, and M. Li. A shuffled frog-
leaping algorithm with memeplex quality for bi-
objective distributed scheduling in hybrid flow
shop. International Journal of Production Re-
search, 59(18):5404–5421, 2020.

[5] J.C. Cai, D.M Lei, J. Wang, and L. Wang. A novel
shuffled frog-leaping algorithm with reinforcement
learning for distributed assembly hybrid flow shop
scheduling. International Journal of Production Re-
search, 61(4):1233-1251, 2023.

[6] R.H. Chen, B. Yang, S. Li, and S.l. Wang. A self-
learning genetic algorithm based on reinforcement
learning for flexible job-shop scheduling problem.

A SHUFFLED FROG LEAPING ALGORITHM WITH . . .

Computers & Industrial Engineering, 149:106778,
2020.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan.
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197, 2002.

[8] Yu Du, Jun-qing Li, Chao Luo, and Lei-lei Meng.
A hybrid estimation of distribution algorithm for
distributed flexible job shop scheduling with crane
transportations. Swarm and Evolutionary Compu-
tation, 62, 2021.

[9] M. Eusuff, K. Lansey, and F. Pasha. Shuffled frog-
leaping algorithm: a memetic meta-heuristic for
discrete optimization. Engineering Optimization,
38(2):129–154, 2006.

[10] J. H. Hao, J. Q. Li, Y. Du, M. X. Song, P. Duan, and
Y. Y. Zhang. Solving distributed hybrid flowshop
scheduling problems by a hybrid brain storm opti-
mization algorithm. IEEE Access, 7:66879–66894,
2019.

[11] E. D. Jiang, L. Wang, and Z. P. Peng. Solving
energy-efficient distributed job shop scheduling
via multi-objective evolutionary algorithm with de-
composition. Swarm and Evolutionary Computa-
tion, 58, 2020.

[12] E. D. Jiang, L. Wang, and J. J. Wang.
Decomposition-based multi-objective optimization
for energy-aware distributed hybrid flow shop
scheduling with multiprocessor tasks. Tsinghua
Science and Technology, 26(5):646–663, 2021.

[13] D. M. Lei, L. Gao, and Y. L. Zheng. A
novel teaching-learning-based optimization algo-
rithm for energy-efficient scheduling in hybrid flow
shop. Ieee Transactions on Engineering Manage-
ment, 65(2):330–340, 2018.

[14] D. Lei and T. Wang. Solving distributed two-stage
hybrid flowshop scheduling using a shuffled frog-
leaping algorithm with memeplex grouping. Engi-
neering Optimization, 52(9):1461–1474, 2019.

[15] J. Q. Li, J. K. Li, L. J. Zhang, H. Y. Sang, Y. Y.
Han, and Q. D. Chen. Solving type-2 fuzzy dis-
tributed hybrid flowshop scheduling using an im-
proved brain storm optimization algorithm. Inter-
national Journal of Fuzzy Systems, 23(4):1194–
1212, 2021.

[16] Y. L. Li, X. Y. Li, L. Gao, and L. L. Meng. An
improved artificial bee colony algorithm for dis-
tributed heterogeneous hybrid flowshop schedul-
ing problem with sequence-dependent setup times.
Computers & Industrial Engineering, 147, 2020.

[17] Y.L. Li, F. Li, Q.K. Pan, L. Gao, and M. F. Tasge-
tiren. An artificial bee colony algorithm for the dis-
tributed hybrid flowshop scheduling problem. Pro-
cedia Manufacturing, 39:1158–1166, 2019.

[18] Y.L. Li, X.Y. Li, L. Gao, B. Zhang, Q.K. Pan, M. F.
Tasgetiren, and Leilei Meng. A discrete artificial
bee colony algorithm for distributed hybrid flow-
shop scheduling problem with sequence-dependent
setup times. International Journal of Production
Research, 59(13):3880–3899, 2021.

[19] C. Lu, L. Gao, Q. K. Pan, X. Y. Li, and J. Zheng.
A multi-objective cellular grey wolf optimizer for
hybrid flowshop scheduling problem considering
noise pollution. Applied Soft Computing, 75:728–
749, 2019.

[20] L. Meng, K. Gao, Y. Ren, B. Zhang, H. Sang,
and C. Zhang. Novel milp and cp models for dis-
tributed hybrid flowshop scheduling problem with
sequence-dependent setup times. Swarm and Evo-
lutionary Computation, 71:101058, 2022.

[21] L. Meng, Y.g Ren, B. Zhang, J. Li, H. Sang, and C.
Zhang. Milp modeling and optimization of energy-
efficient distributed flexible job shop scheduling
problem. Ieee Access, 8:191191–191203, 2020.

[22] Z. Pan, D. Lei, and L. Wang. A knowledge-
based two-population optimization algorithm
for distributed energy-efficient parallel machines
scheduling. IEEE Trans Cybern, PP, 2020.

[23] H. Qin, T. Li, Y. Teng, and K. Wang. Inte-
grated production and distribution scheduling in
distributed hybrid flow shops. Memetic Comput-
ing, 13(2):185–202, 2021.

[24] H.X. Qin, Y.Y. Han, B. Zhang, L.L. Meng, Y.P. Liu,
Q.K. Pan, and D.W. Gong. An improved iterated
greedy algorithm for the energy-efficient blocking
hybrid flow shop scheduling problem. Swarm and
Evolutionary Computation, 69, 2022.

[25] W. S. Shao, Z. S. Shao, and D. C. Pi. Multi-
objective evolutionary algorithm based on multiple
neighborhoods local search for multi-objective dis-
tributed hybrid flow shop scheduling problem. Ex-
pert Systems with Applications, 183, 2021.

[26] G. Wang, X. Li, L. Gao, and P. Li. An effec-
tive multi-objective whale swarm algorithm for
energy-efficient scheduling of distributed welding
flow shop. Annals of Operations Research, page in
press, 2021.

[27] J. Wang, D. Lei, and J. Cai. An adaptive ar-
tificial bee colony with reinforcement learning
for distributed three-stage assembly scheduling
with maintenance. Applied Soft Computing, page
108371, 2021.

120

Jingcao Cai received the Ph.D. degree
in transportation information engi-
neering and control from Wuhan Uni-
versity of Technology, Wuhan, China,
in 2021. He is currently a Lecturer in
the School of Mechanical Engineering,
Anhui Polytechnic University, Wuhu,
China. His current research interests
include intelligent manufacturing sys-

tem optimization and production scheduling.
https://orcid.org/0000-0002-1440-9849

Lei Wang received the Ph.D. degree in
mechanical and electronic engineering
from Nanjing University of Aeronaut-
ics and Astronautics, Nanjing, China
in 2010. Since November 2010, he has
been working at Anhui Polytechnic
University in Wuhu, China, where he
holds the position of professor. His
current research interests include in-

telligent manufacturing system, job shop scheduling and mo-
bile robot path planning.
https://orcid.org/0000-0002-3499-5355

Jingcao Cai and Lei Wang

[28] J.J. Wang and L. Wang. A bi-population coopera-
tive memetic algorithm for distributed hybrid flow-
shop scheduling. IEEE Transactions on Emerging
Topics in Computational Intelligence, 5(6):947–
961, 2020.

[29] J.J. Wang and L. Wang. A cooperative memetic
algorithm with learning-based agent for energy-
aware distributed hybrid flow-shop scheduling.
IEEE Transactions on Evolutionary Computation,
2021.

[30] L. Wang and D. D. Li. Fuzzy distributed hybrid
flow shop scheduling problem with heterogeneous
factory and unrelated parallel machine: a shuffled
frog leaping algorithm with collaboration of mul-

tiple search strategies. IEEE Access, 8:214209–
214223, 2020.

[31] K. C. Ying and S. W. Lin. Minimizing makespan
for the distributed hybrid flowshop scheduling
problem with multiprocessor tasks. Expert Systems
with Applications, 92:132–141, 2018.

[32] B. Zhang, Q. K. Pan, L. Gao, X. Y. Li, L. L. Meng,
and K. K. Peng. A multiobjective evolutionary al-
gorithm based on decomposition for hybrid flow-
shop green scheduling problem. Computers & In-
dustrial Engineering, 136:325–344, 2019.

[33] J. Zheng, L. Wang, and J. J. Wang. A coop-
erative coevolution algorithm for multi-objective
fuzzy distributed hybrid flow shop. Knowledge-
Based Systems, 194:105536, 2020.

