PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Underwater Laguerre-Gaussian beam propagation and phase compensation method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laguerre-Gaussian (LG) beams experience phase twist after long-distance transmission, making the orbital angular momentum (OAM) indistinguishable. This phenomenon becomes more severe in water due to the higher refractive index. Based on the physical principles of LG beams, this paper derives the mathematical expression for LG beam transmission in water to address this issue. It organizes and analyses the physical significance of each term. The exponential term responsible for phase twist is separated and phase compensation is applied to the initial LG beam. Simulation results show that after transmission through water, traditional LG beams exhibit a clockwise twisted distribution of isophase lines. By applying the phase compensation method proposed in this paper, the phase of the initial LG beam is modulated and when the LG beam reaches the observation plane, the isophase lines become straight, verifying the effectiveness of the method. This compensation method holds significant value for LG beams in advanced physics research.
Twórcy
autor
  • College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
  • Division of Time and Frequency Metrology, National Institute of Metrology (NIM), Beijing 100029, China
autor
  • College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
autor
  • Division of Time and Frequency Metrology, National Institute of Metrology (NIM), Beijing 100029, China
autor
  • Tianfu Xinglong Lake Laboratory, Chengdu 610213, China
autor
  • Tianfu Xinglong Lake Laboratory, Chengdu 610213, China
Bibliografia
  • [1] Luski, A. et al. Vortex beams of atoms and molecules. Science 373, 1105-1109 (2021). https://doi.org/10.1126/science.abj2451.
  • [2] Mendoza-Hernández, J., Hidalgo-Aguirre, M., Inclán Ladino, A. & Lopez-Mago, D. Perfect Laguerre-Gauss beams. Opt. Lett. 45, 5197-5200 (2020). https://doi.org/10.1364/OL.402083.
  • [3] Pogrebnaya, A. O. & Rybas, A. F. Evolution of a circularly polarized beam bearing an optical vortex with fractional topological charge in a uniaxial crystal. J. Opt. Technol. 83, 586-589 (2016). https://doi.org/10.1364/JOT.83.000586.
  • [4] Chen, L. et al. Generation and conversion of a dual-band Laguerre-Gaussian beam with different OAM based on a bilayer metasurface. Opt. Mater. Express 12, 1163-1173 (2022). https://doi.org/10.1364/OME.454031.
  • [5] Li, Y.-L. & Luk, K.-M. A low-divergence circularly polarized dual-mode OAM antenna based on higher order Laguerre-Gaussian modes. IEEE Trans. Antennas Propag. 69, 5215-5223 (2021). https://doi.org/10.1109/TAP.2021.3060028.
  • [6] Wang, M. et al. Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration. Opt. Express 29, 27783-27790 (2021). https://doi.org/10.1364/OE.436110.
  • [7] Yang, Y., Li, Y. & Wang, C. Generation and expansion of Laguerre-Gaussian beams. J. Opt. 51, 910-926 (2022). https://doi.org/10.1007/s12596-022-00857-5.
  • [8] Cui, Z., Hui, Y., Ma, W., Zhao, W. & Han, Y. Dynamical characteristics of Laguerre-Gaussian vortex beams upon reflection and refraction. J. Opt. Soc. Am. B 37, 3730-3740 (2020). https://doi.org/10.1364/JOSAB.405281.
  • [9] Volyar, A., Abramochkin, E., Akimova, Ya. & Bretsko, M. Control of the orbital angular momentum via radial numbers of structured Laguerre-Gaussian beams. Opt. Lett. 47, 2402-2405 (2022). https://doi.org/10.1364/OL.459404.
  • [10] Shen, D., He, T., Yu, X. & Zhao, D. Mode conversion and transfer of orbital angular momentum between Hermite-Gaussian and Laguerre-Gaussian beams. IEEE Photonics J. 14, 1-6 (2022). https://doi.org/10.1109/JPHOT.2022.3140359.
  • [11] Lian, Y. et al. OAM beam generation in space and its applications: A review. Opt. Lasers Eng. 151, 106923 (2022). https://doi.org/10.1016/j.optlaseng.2021.106923.
  • [12] Xia, T. et al. Properties of partially coherent elegant Laguerre-Gaussian beam in free space and oceanic turbulence. Optik 201, 163514 (2020). https://doi.org/10.1016/j.ijleo.2019.163514.
  • [13] Li, Y., Cui, Z., Han, Y. & Hui, Y. Channel capacity of orbital-angular-momentum-based wireless communication systems with partially coherent elegant Laguerre-Gaussian beams in oceanic turbulence. J. Opt. Soc. Am. A 36, 471 (2019). https://doi.org/10.1364/JOSAA.36.000471.
  • [14] Yang, H., Yan, Q., Wang, P., Hu, L. & Zhang, Y. Bit-error rate and average capacity of an absorbent and turbulent underwater wireless communication link with perfect Laguerre-Gauss beam. Opt. Express 30, 9053-9064 (2022). https://doi.org/10.1364/OE.451981.
  • [15] Zhang, W., Wang, L., Wang, W. & Zhao, S. Propagation property of Laguerre-Gaussian beams carrying fractional orbital angular momentum in an underwater channel. OSA Contin. 2, 3281-3287 (2019). https://doi.org/10.1364/OSAC.2.003281.
  • [16] Xu, Y., Xu, Q. & Liu, W. Effect of oceanic turbulence on the propagation behavior of a radially polarized Laguerre-Gaussian Schell-model vortex beam. J. Opt. Soc. Am. A 40, 1895-1907 (2023). https://doi.org/10.1364/JOSAA.494951.
  • [17] Sheppard, C. J. R. & Porras, M. A. Comparison between the Propagation properties of Bessel-Gauss and generalized Laguerre-Gauss beams. Photonics 10, 1011 (2023). https://doi.org/10.3390/photonics10091011.
  • [18] Cheng, M. et al. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean. Appl. Opt. 55, 4642-4648 (2016). https://doi.org/10.1364/AO.55.004642.
  • [19] Guo, S. et al. Research on propagation characteristic of Laguerre-Gaussian vortex beams with far-field scattering electric Monte Carlo method. Opt. Commun. 531, 129214 (2023). https://doi.org/10.1016/j.optcom.2022.129214
  • [20] Zhang, Y., Yan, Q., Yu, L. & Zhu, Y. Information capacity of turbulent and absorptive underwater wireless link with perfect Laguerre-Gaussian beam and pointing errors. J. Mar. Sci. Eng. 10, 1957 (2022). https://doi.org/10.3390/jmse10121957.
  • [21] Longman, A. & Fedosejevs, R. Optimal Laguerre-Gaussian modes for high-intensity optical vortices. J. Opt. Soc. Am. A 37, 841-848 (2020). https://doi.org/10.1364/JOSAA.389031.
  • [22] Ghaderi Goran Abad, M. & Mahmoudi, M. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation. Sci. Rep. 11, 5972 (2021). https://doi.org/10.1038/s41598-021-85249-8.
  • [23] Zeng, Z. & Zhao, D. Superposed Laguerre-Gaussian beams-based orbital angular momentum holography. Laser Photonics Rev. 18, 2300965 (2024). https://doi.org/10.1002/lpor.202300965.
  • [24] Lembessis, V. E. & Babiker, M. Mechanical effects on atoms interacting with highly twisted Laguerre-Gaussian light. Phys. Rev. A 94, 043854 (2016). https://doi.org/10.1103/PhysRevA.94.043854.
  • [25] Liu, Y., Lin, R., Wang, F., Cai, Y. & Yu, J. Propagation properties of Laguerre-Gaussian Schell-model beams with a twist phase. J. Quant. Spectrosc. Radiat. Transf. 264, 107556 (2021). https://doi.org/10.1016/j.jqsrt.2021.107556.
  • [26] Xia, Y. et al. Experimental synthesis and demonstration of the twisted Laguerre-Gaussian Schell-mode beam. Photonics 10, 314 (2023). https://doi.org/10.3390/photonics10030314.
  • [27] Xiong, H., Huang, Y.-M. & Wu, Y. Laguerre-Gaussian optical sum-sideband generation via orbital angular momentum exchange. Phys. Rev. A 103, 043506 (2021). https://doi.org/10.1103/PhysRevA.103.043506.
  • [28] Isakov, D. et al. Evaluation of the Laguerre-Gaussian mode purity produced by three-dimensional-printed microwave spiral phase plates. R. Soc. Open Sci. 7, 200493 (2020). https://doi.org/10.1098/rsos.200493.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This work was supported by the National Key R&D Program of China, National Quality Infrastructure (Grant no. 2021YFF0603800), National Natural Science Foundation of China (Grant no.1230030120), the Natural Science Foundation of Zhejiang Province (Grant no. LQ24A040005, LQ24F050006), and Cultivation Fund of Young Sci-tech Talents in CJLU (Grant no. 2023YW54, 2023YW62).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4db892b3-aabe-4e71-b55e-05e52e0fe86f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.